
Adaptive Parallel Execution of Deep Neural Networks on
Heterogeneous Edge Devices

Li Zhou

zholi@cse.ohio-state.edu

The Ohio State University

Mohammad Hossein

Samavatian

samavatian.1@osu.edu

The Ohio State University

Anys Bacha

bacha@umich.edu

University of Michigan–Dearborn

Saikat Majumdar

majumdar.42@osu.edu

The Ohio State University

Radu Teodorescu

teodores@cse.ohio-state.edu

The Ohio State University

ABSTRACT
New applications such as smart homes, smart cities, and autonomous

vehicles are driving an increased interest in deploying machine

learning on edge devices. Unfortunately, deploying deep neural

networks (DNNs) on resource-constrained devices presents signif-

icant challenges. These workloads are computationally intensive

and often require cloud-like resources. Prior solutions attempted to

address these challenges by either introducing more design efforts

or by relying on cloud resources for assistance.

In this paper, we propose a runtime adaptive convolutional neu-

ral network (CNN) acceleration framework that is optimized for

heterogeneous Internet of Things (IoT) environments. The frame-

work leverages spatial partitioning techniques through fusion of

the convolution layers and dynamically selects the optimal degree

of parallelism according to the availability of computational re-

sources, as well as network conditions. Our evaluation shows that

our framework outperforms state-of-art approaches by improving

the inference speed and reducing communication costs while run-

ning on wirelessly-connected Raspberry-Pi3 devices. Experimental

evaluation shows up to 1.9× ∼ 3.7× speedup using 8 devices for

three popular CNN models.

CCS CONCEPTS
• Computing methodologies → Neural networks; Massively
parallel algorithms; • Computer systems organization → Em-
bedded hardware.

KEYWORDS
deep learning, edge devices, parallel execution, inference

ACM Reference Format:
Li Zhou, Mohammad Hossein Samavatian, Anys Bacha, Saikat Majumdar,

and Radu Teodorescu. 2019. Adaptive Parallel Execution of Deep Neural

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SEC ’19, November 7–9, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6733-2/19/11. . . $15.00

https://doi.org/10.1145/3318216.3363312

Networks on Heterogeneous Edge Devices. In SEC ’19: 4th ACM/IEEE Sym-
posium on Edge Computing, November 7–9, 2019, Washington, DC, USA.ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3318216.3363312

1 INTRODUCTION
Deep neural networks (DNNs) are rapidly becoming indispensable

tools for solving complex problems that include computer vision

[28], natural language processing [10], machine translation [5], and

many others. Advancements in hardware [15, 23, 36] and light-

weight frameworks [4, 45] are making the deployment of machine

learning algorithms to new environments possible. In addition,

various emerging applications are driving the need for deploying

machine learning algorithms to edge devices in smart homes, smart

cities, autonomous vehicles, and healthcare [6, 31, 35]. However, in

most cases, the bulk of the computation, even for inference prob-

lems, is performed entirely within the cloud or through a hybrid

combination of edge and cloud computing. In other words, inputs

are collected on edge devices, but the processing is mostly offloaded

to powerful servers in the cloud.

Cloud-based processing of user-generated data faces several

challenges and limitations. For instance, uploading user data to

the cloud raises privacy concerns. Consumers are becoming in-

creasingly aware of the privacy implications associated with online

services and are likely to be more concerned about devices upload-

ing audio and video data to the internet for further processing.

Examples include baby monitors or other in-home cameras, voice

assistants, etc. Furthermore, many IoT applications require frequent

decision making that render cloud-based computing impractical

due to the communication latency it brings.

In response to the aforementioned concerns, efforts have been

made to push machine learning inference from the cloud to the

edge. Edge processing has the benefit of keeping data closer to its

source to provide real-time responses while protecting the privacy

of the end-user [17, 29]. Unfortunately, edge computing for ma-

chine learning workloads faces challenges of its own. Most machine

learning algorithms are computationally demanding making edge

devices inadequate for handling such workloads due to their con-

strained performance, energy, and memory capacities. To this end, a

significant amount of research has investigated efficient approaches

for deploying DNNs to the edge. This includes collaborative com-

putation between edge devices and the cloud [18, 26, 44], model

compression and parameter pruning [11, 19, 46, 48], or customized

mobile implementations [21, 23, 36, 50]. Despite all these efforts,

https://doi.org/10.1145/3318216.3363312
https://doi.org/10.1145/3318216.3363312

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

having the ability to scale existing DNNs without sacrificing the

model accuracy and processing the collected data streams in real

time present ongoing challenges to the deployment of machine

learning across edge devices.

In this work, we explore parallel execution of DNN inference

across multiple heterogeneous devices that are energy-constrained.

This doesn’t require extra model tuning efforts, or new hardware

deployment. A possible application that we envision for our work

is local smart home processing. Instead of relaying collected data

that includes voice commands, sensor readings, and video streams

from a camera to the cloud or a local edge server/cloudlet, our

solution leverages other smart home devices, such as speakers, light

switches, and hubs to resolve the request. This approach creates

a number of research challenges that need to be addressed: (1)

how to partition the workload efficiently across devices; (2) how

to optimize execution across heterogeneous devices possessing

different compute capabilities; (3) how to account for the higher

communication latency in wirelessly connected devices.

To answer these questions, we develop a framework for partition-

ingDNN inference in an optimal way acrossmultiple heterogeneous

devices. A simple model of the available devices and their compute

capabilities is generated first. Next, our framework uses param-

eterized performance prediction models for multiple DNN layer

types. The framework uses these models to predict the execution

time for each layer based on available devices and communication

latency, and selects the best partition points and parallelization

strategies for each partition. To accommodate the heterogeneity of

the computing resources, partition sizes are chosen to match device

capabilities. Then at runtime, the partitions are distributed and

executed across multiple devices. The framework is deployed and

evaluated on the VGG-16 and ResNet-50 image recognition models

[20, 42], and the YOLOv2 object detection model [39], achieving

speedups of 1.9× ∼ 3.7×, relative to the models running on a single

device.

Some prior work [17, 33] explored parallelizing DNN inference

on edge devices. Their approach, however, relies on layer-granularity

parallelism that result in large amounts of intermediate feature

maps that are transferred across devices. When communication

bandwidth is low, this significantly impacts performance. Other

work [51] proposed fusing some of the DNN layers to reduce the

communication overhead. Their approach is, however, limited to

fusing the first several layers in the DNN. Our work generalizes the

problem of layer fusion and proposes a mechanism for choosing

the groups of DNN layers to be fused in an optimal way. This is also

the first work we are aware of that considers device heterogeneity

in this context.

In this work, we mainly focus on solving the three above men-

tioned challenges. More sophisticated issues include how to design

a framework for different types of hardware or OS, how to adapt to

the dynamic changes of device compute capabilities and network

latency. We leave these questions for future work. Overall, this

paper makes the following contributions:

• We discuss the trade-offs in partitioning DNN inference

among multiple lightweight edge devices, and propose an

Adaptive Optimal Fused-layer (AOFL) parallelization to re-

duce the communication cost in an IoT network.

Output data

Input data

D
a

ta
 s

iz
e

 (
M

B
)

0

10

20

30

c
o

n
v
1

.1
c
o

n
v
1

.2
m

a
x
1

c
o

n
v
2

.1
c
o

n
v
2

.2
m

a
x
2

c
o

n
v
3

.1
c
o

n
v
3

.2
c
o

n
v
3

.3
m

a
x
3

c
o

n
v
4

.1
c
o

n
v
4

.2
c
o

n
v
4

.3
m

a
x
4

c
o

n
v
5

.1
c
o

n
v
5

.2
c
o

n
v
5

.3
m

a
x
5

fc
1

d
ro

p
1

fc
2

d
ro

p
2

fc
3

s
o

ft
m

a
x

a
rg

m
a

x

Figure 1: The per-layer data size of input and output in VGG-
16.

Comm

Comp

9.93

L
a

te
n

c
y
 (

s
)

0

2

4

6

8

c
o

n
v
1

.1
c
o

n
v
1

.2
m

a
x
1

c
o

n
v
2

.1
c
o

n
v
2

.2
m

a
x
2

c
o

n
v
3

.1
c
o

n
v
3

.2
c
o

n
v
3

.3
m

a
x
3

c
o

n
v
4

.1
c
o

n
v
4

.2
c
o

n
v
4

.3
m

a
x
4

c
o

n
v
5

.1
c
o

n
v
5

.2
c
o

n
v
5

.3
m

a
x
5

fc
1

d
ro

p
1

fc
2

d
ro

p
2

fc
3

s
o

ft
m

a
x

a
rg

m
a

x

Figure 2: The per-layer latency of input communication
and layer computation in VGG-16 with a single-core of
Raspberry-Pi3 running at 1 GHz in a 25Mbps localWiFi net-
work.

• We design a dynamic programming-based search algorithm

to decide the optimal partition and parallelization for a DNN

model based on the compute capabilities and networks, The

algorithm works for both edge-edge and edge-cloud collabo-

rations.

• We present a collaborative CNN acceleration framework that

adapts to the computing resources and network condition

in the presence of heterogeneity of compute capabilities.

• We apply our technique on a distributed IoT cluster consist-

ing of Raspberry-Pi3-based hardware and evaluate image

recognition and object detection DNN models.

The rest of this paper is organized as follows: Section 2 provides

background information. Section 3 explores different parallelization

strategies in IoT devices and their trade-offs. Section 4 describes

our approach for finding near-optimal parallelization. Section 5

presents the results of our evaluation. Section 6 details the related

work and Section 7 concludes.

2 BACKGROUND
In this section, we give an overview of CNNs and popular DNN

models that we use in the evaluation section.

CNN layers. A convolutional neural network consists of an input ,
an output layer, and multiple hidden layers. The hidden layers

typically consist of a stack of convolution layers, normalization

layers, ReLU layers (i.e., activation functions), pooling layers, and

fully-connected layers. The Convolution (conv) layer is the core
building block of a CNN. It has of a set of learnable filters (kernels),

which convolve across the spatial dimension (width and height)

of the input volume and generate a 2-dimensional feature map for

each filter by computing the dot product between their weights

Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices SEC ’19, November 7–9, 2019, Washington, DC, USA

and a small sub-region of the input. As a result, each layer gener-

ates a successively higher level abstraction of the input data. The

Batch normalization layer normalizes features across spatially

grouped feature maps to reduce internal covariate shift. To increase

non-linearity, an activation layer applies an element-wise activa-

tion function such as rectified-linear unit (relu) to the input data,

which removes negative values from a feature map by setting them

to zero. Both layers are less compute intensive and are often op-

timized to compute with a previous operator. As such, we group

them with the corresponding previous layer that produces their

input. The Pooling layer (e.g., max pooling (max)), performs a

down-sampling operation along the spatial dimensions. It is used to

progressively reduce the spatial size of the representation, number

of parameters, memory footprint and amount of computation in the

network. Hence, it also controls overfitting. Finally, after several

convolution and max pooling layers, the high-level reasoning in the

neural network is done via a dense or fully-connected (f c) layer.
Neurons in a fully-connected layer are connected to all activations

in the previous layer. The value of each output is calculated from

the weighted sum of all inputs. The Softmax and argmax layers

produce a probability distribution over the classes for classification

and select the one with highest probability as the prediction. f c
and conv layers are among the most compute- and data-intensive

layers of a CNN model.

Models overview. VGG-16 was the runner-up in the ImageNet

ILSVRC challenge [40] in 2014. Most importantly, it showed that the

depth of the network is a critical component for good performance.

The network contains 16 conv/f c layers and features a homoge-

neous architecture that only performs 3x3 convolutions and 2x2

pooling from beginning to end. A downside of VGG-16 is that it

uses a lot more memory and parameters in the first fully-connected

layer. Residual neural network (ResNet) [20] features special
skip connections and makes heavy use of batch normalization. It

introduces a so-called "identity shortcut connection" that skips one

or more layers to overcome the vanishing gradient issue, enabling

much deeper networks with good performance. You only look
once (YOLO) [38] is a real-time object detection system that is

tasked with determining the location of certain objects on a given

image, as well as classifying those objects. Similar to ResNet, YOLO

is also missing heavy fully-connected layers at the end of the net-

work.

Key observations. We use VGG-16 to highlight some of the com-

putation and communication characteristics that are typical in CNN

models. Figures 1 and 2 show the per-layer input and output data

sizes, as well as the input communication and layer computation

latency. This data was collected by executing each VGG-16 layer

across two Raspberry-Pi3 devices that had a single active core

running at 1 GHz and communicated over a 25 Mbps local WiFi

network. Overall, we make the following observations from this

experiment:

(1) Convolution layers dominate the computation time. In VGG-

16, 73.8% of the total computation time is spent on conv
layers. For other models without heavy f c layers at the end
of the network like YOLOv2, conv layers consume up to

99.93% of the computation time.

(2) IoT environments generally rely on wireless communication,

which can be slow due to network delays or slow on-device

networking hardware. As a result data transfers can be more

costly than computation for certain layers as shown in Figure

2.

(3) The first few layers in the network generate the most output

data and are therefore the most communication-intensive. In

VGG-16, the cumulative input data size of the first 6 layers

represents 66.7% of the total input data size. Figure 1 shows

the data consumed and produced by each layer in VGG-16,

ordered by depth from left to right. We can see that the

relative amount of input/output data transferred between

layers decreases substantially for deeper layers.

Based on the aforementioned observations, we focus on im-

proving the performance of the convolution layers through paral-

lelization. In addition, device-to-device communication should be

avoided for the first few layers of the CNN model where the input

and output data sizes are large. Finally, when parallelizing conv
layers across multiple IoT devices, we need to carefully consider the

trade-off between the reduced computation time and the increased

communication cost.

3 DISTRIBUTING AND PARALLELIZING DNN
INFERENCE AT THE EDGE

We envision the deployment of our system in an environment

such as a smart home, in which devices of different types and

compute capabilities collaborate to solve a joint task. This creates a

number of research challenges that need to be addressed: (1) how

to partition the workload efficiently between devices; (2) how to

factor in the heterogeneity in compute capabilities of devices; (3)

how to account for the higher communication latency in devices

that connect wirelessly.

Figure 3 provides an overview of the approach we take to solve

these challenges. First, a simple model of the available devices

and their compute capabilities is generated. Next, our framework

uses parameterized performance prediction models for multiple

DNN layer types. At runtime, the framework predicts the execution

time for each layer based on available devices and communication

latency, and selects the best partition points and parallelization

strategies for each partition. To accommodate the heterogeneity

of the compute environment, partition sizes are chosen to match

device capabilities. Then, the partitions are distributed and executed

across multiple devices.

3.1 Model Parallelism and Partitioning
In this work we employ model parallelism to partition DNN infer-

ence among multiple lightweight edge nodes. Model parallelism

subdivides the DNN parameters into partitions that can be assigned

to multiple devices. Each partition generates a subset of the output

feature maps. The partial outputs are then aggregated to form the

final output for each layer. This approach can reduce computation

latency for a single input and is therefore a good fit for parallelizing

machine learning inference.

Partitioning methods. Figure 4 shows two partitioning methods

that can be used to parallelize a 2-dimensional convolution layer:

(1) channel partitioning and (2) spatial partitioning. As shown in

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

DeploymentHardware Profiling Model Partition and Parallelization

Regression models

 (i) Model partition

& fusing points

(ii) Parallelization for

each partition

Edge devices Comm latency

DNN modelDNN layers Edge devices

IoT+
Profiling

+

Distribute partitions

Execute on edge

devicesIoT network

Input

Optimization

Schedule

Figure 3: Design overview.

k

C
C

k
filters

input fmap output fmaps

...
...

(a) Channel partitioning

C
C

output fmapsinput fmap

filters

(b) Spatial partitioning

Figure 4: Examples of parallelizing a 2D convolution layer
(note that, eachfilter and its corresponding input/output fea-
ture map have the same channel size and are not shown in
the plots).

Figure 4a, in a conv layer each filter generates a feature map (i.e, a

channel of the output feature maps). The output feature maps can

be partitioned along the channel dimension such that each device

computes a subset of the output feature maps. This requires map-

ping the corresponding set of filters to each device. The input maps

have to be replicated across all the devices. Channel partitioning is

generally more beneficial for training because it reduces commu-

nication costs associated with synchronizing network parameters.

The need to fully replicate inputs can, however, add substantial com-

munication overhead making channel partitioning less practical for

inference.

An alternative approach is to partition the output feature maps

spatially (i.e., by height and width) and assign them to multiple

devices. Each device keeps a copy of the network and computes a

subset of the output feature maps. As Figure 4b shows, compared

with channel partitioning where the entire input has to be trans-

ferred to all devices, in spatial partitioning each device only requires

a subset of the input. This greatly reduces communication costs in

edge networks that rely on wireless communication.

Note that due to the nature of the convolution operation, for filter

sizes that are greater than 1, input partitions are not completely

disjoint. Each partition has to be extended by ⌊ fi/2⌋ (fi is the size
of filters of layer i) along both dimensions to include inputs from

neighboring partitions that are required in the computation of the

output partition.

3.2 Tradeoffs in Parallelizing CNNs in IoT
Devices

We now introduce two parallelization strategies used in our frame-

work to parallelize a DNN model.

Layer-wise parallelization. Prior work [27] has shown that the

best parallelization strategy depends on the characteristics of the

DNN (i.e., layer type, shape of feature maps and size of filters). As

a result, layer-wise parallelization [25] has been proposed to allow

each layer to be parallelized independently using the appropriate

technique for each layer to obtain the best performance. However, in

layer-wise parallelization, each device computes part of the output

of the current layer and all the subsets of the output need to be

merged and re-partitioned before the execution of next layer. This

requires output to be gathered by a host node, partitioned and

re-sent to all client devices. In a wireless network this results in

substantial communication overhead, as we have shown in Figure

2. For our system, the benefits of layer-wise parallelization are

generally defeated by the communication costs. We use layer-wise

parallelization as a baseline for comparison.

Fused-layer parallelization. To reduce the data movement be-

tween layers, we propose using fused-layer parallelization. The

concept of layer fusion was first proposed in [2] as a method to

reduce off-chip data movement in a CNN accelerator. The idea is to

send the output of one layer directly to the input of the next layer

without going through memory. We propose extending this con-

cept by parallelizing multiple fused layers instead of single layers

individually.

Figure 5 illustrates this concept on the VGG-16 network. A layer-

wise parallelization example is shown in Figure 5(a) for layers

conv2.1 and conv2.2. The input maps for conv2.1 are partitioned
by processor P1 and assigned to processors P1 − Pn for computa-

tion. The outputs are then gathered at P1, merged, partitioned and

assigned as inputs to P1 − Pn in order to compute conv2.2.
Figure 5 (b) shows an example of fused-layer parallelization. Two

convolution layers (conv5.1 and conv5.2) are parallelized as a single
fused-layer block. Partitioning is performed layer-by-layer starting

from the last layer in the fused block. Each layer’s input is the output

of the previous layer. In this example, both layers are divided into

2x2 disjoint subsets. The required input elements for each partition

are calculated based on its output elements. For conv layer, we also

need to extend each partition’s input by ⌊ fi/2⌋ on height and width

for overlapping elements. The process is applied recursively up

to the first layer in a fused block (conv5.1 in our example). Note

that the overlap of the input partitions (highlighted in purple in

Figure 5) leads to some redundant computation as well as additional

communication overhead. As the number of fused layers increases

so does the overlap in the input feature map partitions. This is

Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices SEC ’19, November 7–9, 2019, Washington, DC, USA

Conv layers FC layers

3
x
3
 c

o
n
v
1
.1

,
6
4

3
x
3
 c

o
n
v
1
.2

,
6
4

3
x
3
 c

o
n
v
2
.1

,
1
2
8

3
x
3
 c

o
n
v
2
.2

,
1
2
8

3
x
3
 c

o
n
v
3
.1

,
2
5
6

3
x
3
 c

o
n
v
3
.2

,
2
5
6

3
x
3
 c

o
n
v
3
.3

,
2
5
6

3
x
3
 c

o
n
v
4
.1

,
5
1
2

3
x
3
 c

o
n
v
4
.2

,
5
1
2

3
x
3
 c

o
n
v
4
.3

,
5
1
2

3
x
3
 c

o
n
v
5
.1

,
5
1
2

3
x
3
 c

o
n
v
5
.2

,
5
1
2

3
x
3
 c

o
n
v
5
.3

,
5
1
2

fc
1
 4

0
9
6

fc
2
 4

0
9
6

fc
3
 1

0
0
0

p
o
o
l/
2

p
o
o
l/
2

p
o
o
l/
2

p
o
o
l/
2

p
o
o
l/
2

Input fmaps
Output fmaps

tile 1

output 1

output 2

tile 2

overlapping

computation

Intermediate

fmaps

V
G

G
-1

6

M
o

d
e
l
P

a
rt

it
io

n

Input fmaps Output fmaps/Input fmaps

tile 1

output 1

output 2

tile 2

tile 1

output 1

output 2

tile 2

Output fmaps

c
o

n
v
2
.1

c
o

n
v
2
.2

P
a
ra

ll
e
li
z
a
ti

o
n

D
N

N
 M

o
d

e
l

c
o

n
v
5
.1

c
o

n
v
5
.2

(a) Layer-wise (b) Fused-layer

output 1

P

tile 2

output 2

P1

tile 1

Pn

tile n output n

MergeP1 P1Partition

output 1

P

tile 2

output 2

P1

tile 1

Pn

tile n

output n

Merge P1

output 1

P

tile 2

output 2

P1

tile 1

Pn

tile n

output n

MergeP1 P1 PartitionPartition

overlapping

computation

Figure 5: Illustration of layer-wise parallelization (a) vs layer fusion (b) for VGG-16.

64

64

32

32 32 32

16

16 16 16

8

LW

FL (3x3)

Output size

FL (2x2)

FL (4x4)

C
o

m
p

 s
iz

e
 (

B
F

L
O

P
s
)

0

30

60

90

120

150

O
u

tp
u

t s
iz

e
 (p

ix
e

l)

0

10

20

30

40

50

60

70

Number of layers

2 4 6 8 10 12

(a) Computation

LW

FL (2x2)

FL (3x3)

FL (4x4)

C
o

m
m

 s
iz

e
 (

M
B

)

4

8

12

16

Number of layers (w/ 4-device)

2 4 6 8 10 12

(b) Communication

LW

FL (4x4)
C

o
m

m
 (

M
B

)

3

6

9

12

C
o

m
p

 (
B

F
L

O
P

s
)

2

4

6

8

Number of devices (w/ 4-fused-layer)

2 3 4 5 6 7 8

(c) Per-device comp v.s. comm

Figure 6: Comparison of (a) computation size (BFLOPs) and (b) communication size (MB) for Layer-wise (LW) and Fused-layer
(FL) parallelization over 12 layers starting from conv2.1 of VGG-16. (c) compares reduced per-device computation size and
communication size for 4 layers on 4 devices.

because each input partition has to include all the input elements

required to compute the last output partition of the fused block.

The partitions are next distributed to processors P1 − Pn for

computation. All convolution layers in the fused block will now

be computed locally and only the output of the last layer will be

merged at P1. This reduces communication costs because only the

input of the first layer and the output of the last layer need to be

communicated between devices. The more layers are fused, the

more communication costs are reduced. However, layer fusion

introduces additional costs compared to layer-wise partitioning.

The overlap in input partitions adds to the communication cost of

distributing those partitions, and adds redundant computation to

each node. This cost increases with the number of fused layers. As

a result, finding the optimal number of layers to be included in a

fused block requires carefully balancing the costs and benefits of

layer fusion.

Computation vs. communication trade-off. Figure 6 compares

computation and communication costs for layer-wise (LW) and

fused-layer (FL) parallelization in VGG-16. Beginning at conv2.1,
fused-layer parallelization fuses between 2 and 12 layers at different

partitioning granularities (i.e., 4 (2x2), 9 (3x3), and 16 (4x4)). Com-

putation load is represented in billions floating point operations

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

per second (BFLOPs). We can see that computation increases as

expected with the number of layers. When the number of fused

layers is small (2-4) the amount of computation performed by FL

and LW is very close. This is because the overhead of redundant

computation is small as the first couple of layers have a relatively

large spatial output dimension (64x64). The output dimension is

shown by the yellow line in Figure 6a. As the number of fused layers

increases, and the output spatial dimension decreases (≤ 16x16)

the cumulative computation overhead increases dramatically, up to

3× ∼ 5× when fusing 12 layers. It also leads to more overlapping

elements in the first input layer which increases communication

costs.

The communication costs of FL are approximated using a 4-

device setup by measuring input and output data sizes of a fused

block. In LW, the communication cost is calculated as the cumulative

input data size of each layer. Figure 6b highlights communication

costs for the two techniques measured as the amount of data trans-

ferred between devices, as a function of the number of layers. We

can see that in all cases, FL results in substantially lower commu-

nication overhead compared to LW. For instance, when fusing 8

layers, the communication cost of LW is 3× higher than that of

FL. This is because FL data is transferred only for the first and last

layer in the fused block, while LW requires device-to-device data

transfers between all layers.

The degree of parallelism (i.e., number of parallel devices) is

another factor that affects performance. Different layers or fused

blocks, have different computation needs and communication costs,

which affect the optimal degree of parallelism. Our target environ-

ment is especially sensitive to communication cost which often

limits the optimal number of devices. Figure 6c shows the esti-

mated per-device computation and total communication costs for a

4-fused-layer block with different number of devices. As the number

of devices increases, the per-device computation decreases while

the total communication overhead increases. The communication

overhead for FL increases more slowly with the number of devices

compared to LW, and it is also lower overall. This suggests that FL

is likely exhibit better scalability with the number of devices.

Deploying fused-layer parallelization in our environment in an

optimal way requires answering the following questions: (1) which

layers should be fused, (2) how many layers to include in each

fused block, (3) for each fused and unfused block, how many parti-

tions/devices offer the optimal performance and (4) how to match

the partition size to the capability of the device in a heterogeneous

environment?

4 ADAPTIVE FUSED-LAYER PARTITION AND
PARALLELIZATION

Answering the aforementioned questions requires solving a multi-

variate optimization problem. We present a dynamic programming

based search algorithm to find the parameter values that are pro-

jected to achieve the lowest execution time under our cost model.

4.1 Problem Definition
Given a CNN model G with n layers, where li ∈ G is a layer in

the model and edge (li , lj) is a tensor that is an output of layer li
and an input of layer lj . The model runs on a list of devices D, and

Table 1: Symbol definitions.

Symbol Description

G A CNN model with n layers

D A list of devices, with known computation abil-

ities and communication latency

S Partition and parallelization configurations for

all layers in model G

Glw , Gf l Layers in model G using layer-wise or fused-

layer parallelization, G = Glw
⋃
Gf l

Slw , Sf l Partition and parallelization configurations for

layers using layer-wise or fused-layer paral-

lelizations, S = Slw
⋃
Sf l

li , l(i, j) Layer(s) in model G, li , l(i, j) ∈ G
e = (li , lj) A tensor e from layer li to layer lj
di A device in IoT cluster, di ∈ D
ci Aparallelization configuration for layer i , ci ∈ S
tl (i) The cost function for layer li using layer-wise

parallelization

tf (i, j) The cost function for a fused block that fuses j
consecutive layers from layer i

we assume the communication bandwidth of each connection be-

tween two devices (di ,dj) is known. For layer-wise parallelization,

a parallelization strategy Slw includes a configuration ci for each
layer li which consists of a combination of parameters from {heiдht ,
width, channel }, and a subset of devices D ∈ D. For layer fusion
we add the grouping of layers as an additional dimension to the

optimization. For each fused block, a parallelization strategy Sf l

is generated. The optimization objective is to find a parallelization

strategy S = Slw
⋃
Sf l such that the execution time T(G,D,S) is

minimized.

4.2 Cost Model
We develop a performance model that will be used to guide the

optimization search. To construct the model for each layer type,

we vary the configuration parameters of the layer and measure

the latency for each configuration. Using the profiles, we build a

regression model for each layer type to predict execution latency.

To predict the communication cost, we use a similar approach by

varying the data transfer size and measuring the latency. We define

two basic cost functions:

• For each layer li and its parallelization configuration ci from
{heiдht , width, channel }, tc (li , ci ,D) is the time to process

layer li under configuration ci on devices D ∈ D. This only
includes the inference time which is estimated by process-

ing the layer under the configuration multiple times on the

devices and measuring the average execution time.

• For each e = (li , lj), tx (e,d,k) is time to transfer the tensor

e between two devices d and k using the size of the data

and the known communication bandwidth. tx (e,d,D) =∑
k ∈D tx (ek ,d,k) is the total time of transferring the tensor

ek from a local device d to remote devices k ∈ D.

Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices SEC ’19, November 7–9, 2019, Washington, DC, USA

The cost functions for each layer li in layer-wise parallelization

is then defined as the total time of the input/output tensors transfer

and layer computation:

tl (i) = tx (ein ,d,D) + tx (eout ,d,D) + tc (li , ci ,D) (1)

Using this cost function, we define

T(G,D,Slw) =
∑
li ∈G

tl (i) (2)

T(G,D,Slw) estimates the execution time of a single inference

under layer-wise parallelization strategy Slw .

Next, assuming several consecutive convolution layers are grouped

under fused-layer parallelization strategy Sf l , where Slw (i) of

layer li in the fused block will be replaced with Sf l (i, j). The cost

function for a fused block l(i, j) ∈ G
f l

(i.e., fusing j consecutive
layers from layer i) is then defined as the total data transfer time of

the first layer’s input tensor, the last layer’s output tensor, and the

sum of the computation time of all grouped layers, running on D

devices:

tf (i, j) = tx (ein ,d,D) + tx (eout ,d,D) +
∑

i≤k<i+j

tc (lk , ck ,D) (3)

Next we define

T(G,D,S) =
∑

li ∈Glw
tl (i) +

∑
l(i, j)∈Gf l

tf (i, j) (4)

whereT(G,D,S) estimates the total execution time of a single infer-

ence for a model G = Glw
⋃
Gf l on a list of devices D under a hy-

brid layer-wise/fused-layer parallelization strategy S = Slw
⋃
Sf l .

4.3 Dynamic Programming-based
Optimization

The optimization goal for our framework is finding paralleliza-

tion strategy S that minimizes the runtime T(G,D,S). Given the

relatively small optimization space, we use dynamic programming-

based search through the space of possible solutions.

We start by determining the optimal parallelization configuration

for each layer, and each fused block. We find the optimal Slw and

the optimal Sf l with two tables of cost tl (.) and tf (.) with a list

of devices D by varying the used number of devices from 1 to the

maximum. Then we use the following dynamic programming based

search algorithm to find the optimal placement of fused blocks in a

model.

We define the fused-layer partitioning problem as follows. Given

a CNN model G with n layers and tables of cost tl (.) and tf (.),
determine the minimum cost to (i, j) (equivalent to To (G,D,S)when
i = 0, j = n) that can be achieved through layer fusion.

We can partition a n-layer model in 2
n−1

ways, since we have an

independent option of fusing, or not fusing, at distance j from the

first layer, for j = 1, 2, ...,n. We denote a decomposition into parts

using ordinary additive notation. If an optimal solution partitions

the model into k parts, for some 1 ≤ k ≤ n, then an optimal

decomposition n = i1 + i2 + ... + ik of the model into fused layers

i1, i2, ..., ik , for a minimum time:

to (0,n) = tf (0, i1) + tf (i1, i2) + ... + tf (
∑
1≤j≤k−1 i j , ik).

Algorithm 1 Adaptive Optimal Fused-layer (AOFL) Parallelization

Strategy Search Algorithm

1: Input G: a CNN model with n layers

D: a list of devices
Slw (.) and Sf l (.): precomputed parallelizations

tl (.) and tf (.): precomputed cost functions

2: Output S: a parallelization strategy thatminimizingT(G,D,S)
3: to (.) ← MAX , f lo (.) ← 1

4: function AOFL(i, j)
5: if to [i][j] < MAX then
6: return to [i][j]

7: if j = 0 then
8: tmin ← 0, lopt ← 0

9: else if j = 1 then
10: tmin ← tl (i), lopt ← 1

11: else
12: tmin ← MAX
13: for k ∈ [1, j] do
14: t ← tf (i,k) +AOFL(i + k, j − k)
15: if t < tmin then
16: tmin ← t , lopt ← k

17: to [i][j] ← tmin , f lo [i] ← lopt
18: return to [i][j]

19: function BuildStrategy(Slw (.), Sf l (.), f lo (.))
20: i ← 0

21: while i < n do
22: if f lo (i) = 1 then
23: Add Slw (i) to S
24: else
25: Add Sf l (i, f lo (i)) to S

26: i ← i + f lo (i)

27: return S

More generally, we can frame the optimal value to (0,n) for n ≥ 1

in terms of optimal cost from fusing layers:

to (0,n) = min(tf (0,n), to (0, 1) + to (1,n − 1), to (0, 2) + to (2,n −
2), ..., to (0,n − 1) + to (n − 1, 1)).

The first argument, tf (0,n), corresponds to fusing all the layers of

the model. The other n − 1 arguments correspond to the minimum

time obtained by making an initial partitioning of the model into

two groups of layers i and n − i , for each i = 1, 2, ...,n − 1, and then
recursively searching for the optimal subpartions of those layer

groups. We may view every decomposition of a j-layer part starting
from layer i as fusing the first part followed by some decomposition

of the reminder, and simplify the general equation for dynamic

programming as shown below:

to (i, j) =


0 j = 0,

tl (i) j = 1,

min

1≤k≤j
(tf (i,k) + to (i + k, j − k)) otherwise .

(5)

Algorithm 1 shows the pseudocode of our optimization algorithm

which uses dynamic programming with memoization to find out

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

Algorithm 2 Update Cost Functions tl (.) and tf (.)

1: Input G and D

2: Output tl (.), tf (.) and Slw (.), Sf l (.)
3: function Update(G,D)
4: D ← ∅, tl (.) ← MAX , tf (.) ← MAX
5: Rank D by f req and then by bw between source dev

6: ▷ Iterate G as follow:

7: for i ∈ [0,n − 1] do
8: for j ∈ [1,n − i] do
9: Dl (.) ← ∅, Df (.) ← ∅

10: for d ∈ D do
11: D ′ ← D

⋃
d

12: Adjust the size of partitions in ci , if applicable
13: if j = 1 then
14: Predict tl (i)

D′
with regression model

15: if tl (i)D
′

< tl (i) then
16: tl (i) ← tl (i)

D′ ,Dl (i) ← D
′

17: Update Slw (i) with ci and Dl (i)

18: Predict tf (i, j)
D′

with regression model

19: if tf (i, j)D
′

< tf (i, j) then
20: tf (i, j) ← tf (i, j)

D′ ,Df (i, j) ← D
′

21: Update Sf l (i, j) with ci and Df (i, j)

the optimal parallelization strategy. Function AOFL computes the

minimum time and a list of optimal number of fused layers starting

from a given layer. The optimal parallelization strategy is built up

through function BuildStrategy by iterating the model from the

beginning with steps of a list of optimal number of fused layers,

and adding the corresponding parallelization configuration to S.

Optimizing for heterogeneity. In order to adapt to the hetero-

geneity in compute capabilities of the IoT network, we need to

balance the workload assigned to each device such that they all fin-

ish execution at roughly the same time. To that end, the algorithm

ranks participating devices D, first by clock frequency (f req) then
by network bandwidth (bw) between the source and destination

devices. The two cost tables of tl (.) and tf (.) are updated using

function Update described in Algorithm 2. Within a fused block, the

computation and communication costs of each partition are func-

tions of its input size P, and the execution time of each partition

can be represented as

tf (.)i = tcomm (Pi) + tcomp (Pi) (6)

where i = 1, 2, ..,N . The ratio of input sizes of two partitions in a

fused block then can be calculated with the regression models by

setting tf (.)i
′
s equal. To obtain the best performance, a top device

is used when predicting the execution time when adding one more

device.

4.4 Implementation
We use Darknet [37] with NNPACK [13] as backend inference en-

gine kernel to execute convolution layer, and implement a dis-

tributed framework integrated with network communication mod-

ules using TCP/IP with socket.

C
o

m
p

 s
iz

e
 (

B
F

L
O

P
s
)

0

50

100

2x2 2x4 4x4

(a) Total comp size

C
u

m
u

l
c
o

m
p

 o
v
e

rh
e

a
d

 (
%

)

0

50

100

150

2x2 2x4 4x4

(b) Total comp overhead

In
p

u
t
a

n
d

 o
u

tp
u

t
s
iz

e
 (

M
B

)

0

3

6

9

12

2x2 2x4 4x4

(c) Total comm size

Figure 7: An example of total computation size (BFLOPs),
computation overhead (%), and communication data size
(MB) with same fused blocks in VGG-16 at three different
partitioning granularities.

Linear regression performance model.We used a linear regres-

sion model to predict the runtime of different convolution layers

with different configurations and various input shapes based on

the partitioning scheme. The model is trained on samples with

different convolution related parameters like input size and chan-

nel, number of filters, size of the filters, padding and stride. We

randomly selected appropriate values from the range of interest for

each parameter. We run each sample and get its runtime to generate

the training and test sets for linear regression.

Deployment and device mapping. Assuming a CNN model is

divided into blocks, and each block includes one or more fused

layers respectively. The local device that captures the input (e.g., a

video camera or smart speaker) is responsible for partitioning the

input tensor, and distributing the partitioned input among devices.

Note that it is possible that the optimal configuration for some

blocks is to run on a single device, in which case they will be

deployed on a single node. The remote devices start to execute once

a task is received and send the results back once the job is completed.

All results will be merged at the local device and re-partitioned for

the next block.

Reconfiguration. The performance of edge devices in IoT net-

works fluctuates. Our system periodically recalculates the optimal

partition points to adapt to changes in computational capabilities

and network conditions. Once there is a change in the model paral-

lelization, we adjust the configurations of partitions and reschedule

them. Since the proposed algorithm is lightweight, it only takes

about several seconds to recalculate the optimal partition points

and reconfigure the framework. Note that the interval for recalcu-

lating the optimal partitions should be carefully selected to avoid

performance degradation due to rescheduling overhead. We leave

this exploration to future work.

5 EVALUATION
In this section, we conduct experimental evaluations to validate

the effectiveness and robustness of the proposed Adaptive Optimal

Fused-layer (AOFL) parallelization. We first explore the perfor-

mance trade-off at different partitioning granularities and compare

the runtime of different parallelization strategies. We then demon-

strate the robustness of our solution to heterogeneous network and

processing conditions.

Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices SEC ’19, November 7–9, 2019, Washington, DC, USA

0.13

0.28

0.48

0.67

0.73

F
ra

c
ti
o

n
 o

f
to

ta
l
e

x
e

c
.
ti
m

e

0

0.2

0.4

0.6

0.8

1.0

fused-layer

3 6 101418

EFL-6
EFL-10
EFL-14
EFL-18

T
im

e
 (

s
e

c
)

10

15

20

25

Number of devices

1 2 3 4 5 6 7 8

(a) VGG-16

0.47

0.37

0.27

0.140.05F
ra

c
ti
o

n
 o

f
to

ta
l
e

x
e

c
.
ti
m

e

0

0.2

0.4

0.6

0.8

1.0

fused-layer

24 8 12 16

EFL-8
EFL-12
EFL-16

T
im

e
 (

s
e

c
)

14

16

18

20

Number of devices

1 2 3 4 5 6 7 8

(b) YOLOv2

Figure 8: Performance of Early Fused-layer (EFL) paralleliza-
tion with different number of fused layers.

5.1 Experimental Setup
Workloads. We focus on parallelizing a total of 13 convolution

layers from VGG-16 and 23 layers from YOLOv2, accounting for

73.8% and 99.3% of their total execution time, respectively.

Testbed. We build two IoT clusters for running our experiments

using the Raspberry-Pi3 B+ model. Each Raspberry-Pi3 B+ consists

of a 1.4 GHz Quad Core ARM Cortex-A53, 1 GB LPDDR2 SDRAM

and dual-band 2.4 GHz/5 GHz wireless. The first cluster (Cluster-1)

is dedicated to performance evaluation and consists of 8 single

core nodes that are fixed to run at 1 GHz in order to represent a

realistic low-end edge device cluster. The second cluster (Cluster-2)

is configured to represent a heterogeneous edge environment. We

use it to evaluate the framework’s ability to deal with heterogeneous

devices that have different core frequencies between 400 MHz and

1 GHz. In addition, to evaluate the impact of different network

conditions, we test with three network configurations consisting

of two routers that support 2.4 GHz/5 GHz WiFi. (1) WiFi-1, a

fast network with a measured bandwidth of 93.7 Mbps. (2) WiFi-

2, a medium speed network with a measured bandwidth of 62.7

Mbps. (3) WiFi-3, a slow network with the measured bandwidth

of 25.1 Mbps. Finally, we assume that each device reserves enough

memory before it processes any assigned tasks and that all the

trained weights are loaded into each device’s storage.

Schemes.We compare four different parallelization strategies in

our evaluation: (1) Layer-wise (LW) parallelization, which paral-

lelizes the networks layer by layer; (2) Early Fused-layer (EFL) paral-

lelization, an extension of to the implementation of DeepThings [51],

which fuses and parallelizes the first few convolution layers of a

model and executes the remaining layers in a single device; (3)

Optimal Fused-layer (OFL) parallelization, which selectively fuses

convolution layers at different parts of a model; (4) Adaptive Op-

timal Fused-layer (AOFL) parallelization, which extends OFL by

dynamically adapting to the available computing resources and

network condition in an IoT network.

5.2 Partitioning Granularity in Fused-layer
Parallelization

The performance of fused-layer parallelization depends on parti-

tioning configurations that include the points of interest for layer

fusion in a CNN model, the partitioning granularity, and the num-

ber of devices. Given the fused blocks in a model, the partitioning

granularity of each block affects the computation and communi-

cation size. In our analysis, we quantify computation in billion

floating-point operations per second (BFLOPs), and communication

in terms of transferred data size in megabytes (MB). For an IoT net-

work where the computational power of devices and the network

bandwidth are known, the partitioning granularity represents a

qualitative measure of the computation to communication ratio.

Figure 7 shows an example of the impact of different partitioning

granularities on computation and communication with two fused

blocks in VGG-16. The first seven and last six convolution layers

in the model are fused. Finer granularity results in lower average

computation, however its total computation is increased, as well

as the computation overhead. Increasing the granularity from 2x2

to 2x4, the average computation size is reduced by 35.4%, but the

total computation size is increased by 34.3% as shown in Figure

7a. Because finer granularity creates more redundant computation

from overlaps among partitions. Figure 7b shows increasing the

granularity from 2x4 to 4x4 increases total overhead from 90.7% to

163.7%.

Figure 7c shows similar trend for communication size. We ob-

serve that with the same fused blocks, the difference of total trans-

ferred data size between two partitioning granularities is from the

cumulative overlaps among partitions in the input layer of fused

blocks. Switching granularity from 2x2 to 2x4, the communication

size is decreased by 29.1% on average but increased by 41.8% in

total.

We test the three partitioning granularities with Cluster-1 and

WiFi-1, and observe that granularity of 2x2 achieves the best perfor-

mance on 4 devices since it has the least computation and commu-

nication cost. Overall, enabling more devices requires increasing

the number of partitions. As such, our design adapts to different

partitioning granularities by adjusting the fused blocks to reduce

the computation cost. For instance, at granularity of 2x4 on 8 de-

vices, breaking the second fused block into two smaller blocks with

3 convolution layers in each can effectively reduce the computation

and communication cost by 32.3% and 4.4% respectively. In general,

the choice of the partitioning granularity is a trade-off between

computation and communication which varies based on the avail-

able computational resources and the condition of the network. Our

design uses Algorithm 1 to determine the optimal parallelization

configurations.

5.3 Runtime Performance
We compare the execution time of our Optimal Fused-layer (OFL)

parallelizationwith two baselines: Layer-wise (LW) and Early Fused-

layer (EFL) parallelizations on 1 to 8 devices for VGG-16 and YOLOv2.

We set the partitioning granularity to be the same number of used

devices. To find the optimal fusing point for EFL, we vary the num-

ber of fused layers from the beginning of each model. As shown

in Figure 8, the performance of EFL initially improves when the

number of fused layers and devices is increased. However, EFL

doesn’t scale well with deeper CNNs. We observe that fusing 14

and 18 layers in VGG-16 results in similar execution times. The

same is observed with fusing 12 and 16 layers in YOLOv2. In some

cases, the performance may even degrade if too many layers are

fused. For instance, fusing 18 layers in VGG-16 runs slower than

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

1 GHz LW

EFL

OFL

T
im

e
 (

s
e

c
)

0

10

20

30

40

Number of devices

1 2 3 4 5 6 7 8

750 MHz LW

EFL

OFL

T
im

e
 (

s
e

c
)

0

10

20

30

40

Number of devices

1 2 3 4 5 6 7 8

LW

EFL

OFL

500 MHz

T
im

e
 (

s
e

c
)

0

10

20

30

40

Number of devices

1 2 3 4 5 6 7 8

(a) VGG-16: performance

EFL-1GHz

EFL-750MHz

EFL-500MHz

OFL-1GHz

OFL-750MHz

OFL-500MHz

S
p

e
e

d
u

p

1.0

1.5

2.0

2.5

3.0

3.5

 Number of devices

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(b) VGG-16: speedup over LW

1 GHz LW

EFL

OFL

T
im

e
 (

s
e

c
)

0

10

20

30

40

Number of devices

1 2 3 4 5 6 7 8

750 MHz LW

EFL

OFL

T
im

e
 (

s
e

c
)

0

10

20

30

40

Number of devices

1 2 3 4 5 6 7 8

LW

EFL

OFL

500 MHz

T
im

e
 (

s
e

c
)

0

10

20

30

40

Number of devices

1 2 3 4 5 6 7 8

(c) YOLOv2: performance

EFL-1GHz

EFL-750MHz

EFL-500MHz

OFL-1GHz

OFL-750MHz

OFL-500MHz

S
p

e
e

d
u

p

1.0

1.5

2.0

2.5

 Number of devices

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(d) YOLOv2: speedup over LW

Figure 9: Performance of different parallelizations running VGG-16 and YOLOv2 at different frequencies. The speedup is
compared with Layer-wise (LW) parallelizaiton at the corresponding frequency.

1 GHz

750 MHz

500 MHz

S
p

e
e

d
u

p

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Number of devices

1 2 3 4 5 6 7 8

(a) VGG-16

1 GHz

750 MHz

500 MHz

S
p

e
e

d
u

p

1.0

1.2

1.4

1.6

1.8

2.0

Number of devices

1 2 3 4 5 6 7 8

(b) YOLOv2

Figure 10: Speedup of Optimal Fused-layer (OFL) over a sin-
gle edge device in WiFi-1 (93 Mbps).

fusing 6 layers. Another drawback of EFL relates to the fraction of

layers that can be fused within a given model. EFL only works on

convolution layers, leaving 27% ∼ 33% of VGG-16 and 54% ∼ 63%

of YOLOv2 execution serialized.

Figure 9 shows the execution time of LW, EFL and OFL at differ-

ent frequencies. In LW, the communication cost increases linearly

with the number of devices due to the per layer data distribution

and processing synchronization. The latency reaches a minimum

on 4 devices across different frequencies in VGG-16. However, the

latency increases in YOLOv2 at higher frequencies when using

more devices since the model has lightweight convolution layers.

Overall, the performance gain from parallelizing computation is

easily canceled out because of the the high communication cost. As

such, we conclude that LW is not suitable for networks that have a

low computation to communication ratio.

By contrast, EFL andOFL reduce the communication cost through

layer fusion. Despite the computation overhead, both of them scale

their performance with more devices. For example, at 750 MHz EFL

reduces the latency by 27.7%∼ 47.5% on 2 to 8 devices relative to LW.

OFL further reduces the latency by 14.1% ∼ 41.5% on 2 to 8 devices

relative to EFL. We observe that OFL always performs better than

EFL for the same partitioning granularity due to its flexibility in

fusing layers. Unlike EFL, OFL is able to harness parallelization for

deeper layers in a model and adapt the fused blocks as the number

of devices changes. As a result, OFL is 1.2× ∼ 1.7× faster than EFL.

We also observe that OFL shows better improvement over EFL with

slower frequencies. This makes it more suitable for low-end edge

devices.

Increasing the number of available devices to boost performance

requires the consideration of two factors. First, the execution time

is reduced as more devices contribute to the computation. However,

this increases the communication time since more data is sent

over the network. Second, the overhead introduced by overlapping

partitions also increases since we need to use finer partitioning

granularity. Overall, as Figures 9 (b) and (d) show, OFL exhibits

much better scalability with the number of devices compared to

EFL, especially for VGG-16.

Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices SEC ’19, November 7–9, 2019, Washington, DC, USA

WiFi-1 (93Mbps) WiFi-2 (62Mbps) WiFi-3 (25Mbps)

LW

EFL OFL

T
im

e
 (

s
e

c
)

10

20

50

100

1 2 3 4 5 6 7 8

Number of devices

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) VGG-16

WiFi-1 (93Mbps) WiFi-2 (62Mbps) WiFi-3 (25Mbps)

LW

EFL OFL

T
im

e
 (

s
e

c
)

20

50

100

1 2 3 4 5 6 7 8

Number of devices

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(b) YOLOv2

Figure 11: Execution time under different WiFi settings.

5.4 Analysis of Optimal Partitioning Strategies
We analyze the optimal layer fusion configurations under our cost

model for VGG-16 and YOLOv2 and observe that OFL fuses more

layers from the beginning CNN layers that have large input and

output sizes as the number of devices increases. It uses the added

compute power to offset the increased computation overhead and

achieve large reduction in communication. For instance, we observe

that the first 10 and 16 layers in both models are fused respectively.

Second, deeper layers in a CNN model have smaller height/width

dimensions but a larger channel dimension. This introduces higher

computation overhead due to the overlapping of partitions with

finer granularity. As a result, OFL fuses a smaller number of layers

to balance the computation overhead and communication cost in

deeper layers. In addition, large fused blocks are broken into smaller

blocks to reduce the computation overhead when the frequency of

the devices is decreased.

5.5 Robustness
We examine the robustness of our proposed Adaptive Optimal

Fused-layer (AOFL) parallelization in terms of scalability, network

conditions and heterogeneity.

Scalability. Figure 10 shows the scalability of Optimal Fused-layer

(OFL) parallelization as a function of devices with different frequen-

cies in WiFi-1. The speedup relative to a single device increases as

more devices are added, but is limited by the high communication

cost. For VGG-16, OFL runs 1.6× ∼ 3.7× faster on 2 to 8 devices

than a single device. The speedup with YOLOv2 is less and ranges

from 1.3× ∼ 1.9×. This is because the computation of convolution

layers in YOLOv2 are lightweight and the communication repre-

sents a larger fraction of the runtime. The speedup is also improved

when the frequency drops and the ratio of computation increases.

LW

EFL

OFL

AOFL

T
im

e
 (

s
e

c
)

0

10

20

30

case 1-1 case 1-2 case 2-1 case 2-2

Figure 12: Execution time on different configurations of the
heterogeneous Cluster-2.

For instance, with 8 devices, the speedup increases from 3.2× to

3.7× and 1.6× to 1.9× in each model when doubling the frequency

from 500 MHz to 1 GHz. This shows that OFL scales better with

higher computation to communication ratio, and can obtain higher

speedup with less powerful devices. It is especially suitable for

computation-intensive models that operate in a slow network, as

well as low-end edge devices.

Impact of the network. Figure 11 shows how our framework

adapts to changes in the network conditions. LW is heavily im-

pacted by changes in the bandwidth. The execution time increases

by 59.8% and 86.4% on average when the network slows down from

93 Mbps to 25 Mbps (WiFi-1 to WiFi-3). On the other hand, EFL is

not sensitive to the network conditions. An average slow down of

4.8% is measured when switching from the faster network to the

slow one (WiFi-1 to WiFi-3). Since EFL only requires distributing

and collecting inputs and outputs once, the change of the communi-

cation cost due to different network conditions has a lesser effect on

the total execution time. Finally, OFL experiences latency increases

in 14.3% increments as the network is slowed down. However, it

still performs better than EFL despite the higher communication

cost. This also indicates that OFL takes better advantage of faster

networks by distributing the computation of more layers in a model

in order to improve performance.

Impact of heterogeneity. In these experiments, we focus on the

heterogeneity in computational ability that can lead to inconsistent

progress among the workers and slow down the speed of the infer-

ence. We use different device speeds available in the heterogeneous

Cluster-2 in order to evaluate the robustness of our method in the

presence of heterogeneity.

Table 2: Case study for heterogeneous IoT.

Cases Devices in Custer 2: #Devices x Frequency x #Cores (= 1)

1-1 2 x 1 GHz, 6 x 400 MHz

1-2 1 x (1 GHz x 4), ...

2-1 2 x 1 GHz, 2 x 800 MHz, 2 x 600 MHz, 2 x 400 MHz

2-2 2 x 1 GHz, 4 x 800 MHz, 2 x 600 MHz

Table 2 lists the different heterogeneous configurations we con-

sider in our study. The results of this study are summarized in

Figure 12 and can be divided into two main categories.

Case 1 represents scenarios that prompt our solution to use a

small number of fast devices to achieve better performance. This

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

can be further divided into the sub-cases: 1-1) where the optimal

performance of themodel is parallelized with the two fastest devices

while the rest of the devices are unused. For instance, with two 1

GHz devices, AOFL reduces the runtime by 15.8% compared to a

configuration that uses all 8 devices. 1-2) represents a configuration

that mimics local server approach where a much faster device is

available. In this sub-case, we use a four-core device running at 1

GHz. We observe that the framework recognizes this and sends the

entire input to such a device for execution. This indicates that our

proposed algorithm also works for edge-cloud collaboration.

Case 2 represents scenarios that prompt our solution to adapt

to the availability of devices with different frequency distributions.

This can be further divided into the sub-cases: 2-1) when the fre-

quencies of devices span over a wide range, AOFL optimally assigns

tasks across all the devices with the exception of the slowest two

devices running at 400 MHz. This configuration results in an 18.7%

reduction in runtime. 2-2) when the frequencies of devices are

within a narrow range, the input partition sizes are adjusted to ac-

commodate the frequency, so each device can spend a similar time

in computation. This configuration results in all 8 devices being

used leading to a 12.3% reduction in runtime.

5.6 Generalizing to More DNNs
Our framework is able to accommodate various CNNs with complex

structures, including bypass connections and parallel layers.

Plain block Residual block

stacked neural network layers

input output function

(a) Neural network blocks

1GHz

750MHz

500MHz

S
p

e
e

d
u

p

1.2

1.6

2.0

2.4

Number of devices

1 2 3 4 5 6 7 8

(b) ResNet-50

Figure 13: (a) Illustration of two different neural network
blocks. (b) Speedup ofOptimal Fused-layer (OFL) for ResNet-
50 over a single edge device in WiFi-1 (93 Mbps).

Figure 13a shows two types of neural network blocks. Plain block

stacks convolution layers and goes deeper to get better performance.

Both VGG-16 and YOLOv2 have consecutive convolution layers, and

achieve significant performance improvement using fused-layer

parallelization. However, deep neural networks have the problem

of vanishing gradients, which may stop the neural network from

further training. To overcome the vanishing gradient issue, ResNet

features special skip connections to reuse activations from previous

layers until the adjacent layer learns its weights, enabling much

deeper networks with good performance. The output tensor in the

residual block is calculated with element-wise operations from the

outputs of previous layers. In fused-layer parallelization, fusing

layers in different residual blocks are not allowed unless the input

of the current residual block and the output of the next residual

block are within the same fused-layer block. This means fusing

all the layers in two consecutive residual blocks. Then the bypass

connections are duplicated and run on each partition, since there

are no dependencies across different partitions. Figure 13b shows

the performance of Optimal Fused-layer (OFL) parallelization for

ResNet-50 as a function of devices with different frequencies in

WiFi-1. In our experiments, one or more residual blocks are fused

based on the search algorithm, and similar performance gain and

scalability are observed. OFL runs 1.7× ∼ 2.3× faster on 2 to 8

devices than a single device. The results also indicate better speedup

when the frequency drops and the ratio of computation increases.

Fused-layer parallelization may be limited by the available fus-

able convolution layers andmodel structures. For example, GoogLeNet

[43] features inception module where filters with multiple sizes are

used to operate on the same level. The outputs of all filter branches

are concatenated depth-wise and sent to the next inception module.

The network essentially would get a bit wider rather than deeper.

A single filter branch may not benefit from fused-layer paralleliza-

tion due to its number of fusable convolution layers. However, the

structure of inception module itself implies a possible parallelism

among the filter branches. DenseNet [22] features dense blocks

where each layer is connected to every other layer in feedforward

fashion. It alleviates vanishing gradients, strengthens features prop-

agation, and encourage features reuse. In order to use fused-layer

parallelization, it requires to fuse the entire dense block, and the

performance depends on the depth of a dense block. We will explore

the applicability to more DNNs in future work.

Model compression, including parameter pruning or quantiza-

tion, may also benefit from the fused-layer parallelization when

the system works under high computation to communication ratio.

In the 5G era, much faster communication speed will be available,

which can potentially change today’s computation and communi-

cation ratio at the edge. The benefits of fused-layer parallelization

would be further increased by the faster 5G network. However,

when network speed is slow, it may be more suitable to run DNNs

on a single device. Our algorithm can predict the best parallelization

options based on the model characteristics, devices capacity and

network condition.

6 RELATEDWORK
Current techniques enablingDNN-based intelligent applications fall

into two categories: cloud-based and edge-only approaches. Cloud-

based approaches [3, 16, 24, 26, 34, 44, 49] fully (i.e., cloud-only)

or partially (i.e., edge-cloud collaboration) offload the computa-

tion to the cloud. Neurosurgeon [26] proposes to distribute a DNN

model between edge devices and the cloud by deciding a single

partition point. In case the model is not pre-installed when of-

floading remotely, IONN [24] designs incremental model uploading

with multiple partition points to overlap the local client and server

executions.

Edge-only approaches [14, 18, 19, 23, 33, 36, 47, 51] execute the

DNNs on a single edge device with specialized hardware or a small

IoT cluster. Many customized accelerators for CNNs have been

proposed [1, 7–9, 12, 30, 32, 41]. They focus on improving the per-

formance of CNNs by exploring the potential for resources sharing,

Adaptive Parallel Execution of Deep Neural Networks on Heterogeneous Edge Devices SEC ’19, November 7–9, 2019, Washington, DC, USA

and optimizing basic operations. Emerging memory technologies

have been explored due to the high memory requirements of ma-

chine learning applications.

Our work falls into the category of distributing DNN inference in

a small IoT cluster, which have gained increasing research interests

recently. NestDNN [14] proposes that multiple compressed models

can be dynamically selected based on available runtime resources.

Collaborative computing enables a small IoT cluster to run larger

models or speedup inference by employing the available idle de-

vices. MoDNN [33] uses layer-wise parallelization, however the

MapReduce-like execution results in a large amount of intermediate

data to be transferred across devices. Collaborative perception [18]

pipelines the computation by partitioning a DNN model and dis-

tributing the partitioned blocks to multiple edge devices. Follow-up

work in [17] introduces model parallelism methods for both dense

and convolution layers in order to address the memory overhead

due to model replication. DeepThings [51] reduces the communica-

tion cost by fusing the early convolution layers and parallelizing

these layers in multiple devices. Our work generalizes the fused-

layer approach, proposes a mechanism for finding optimal layer

fusion and device partitioning configurations, and is optimized for

heterogeneous IoT environments, which were not addressed in

prior work.

7 CONCLUSION AND FUTUREWORK
In this paper, we explore the trade-offs of distributing machine

learning applications in IoT, and propose an Adaptive Optimal

Fused-layer (AOFL) parallelization for improving the DNN infer-

ence at the edge. We design a dynamic programming based search

algorithm to find the optimal partition and parallelization for a CNN

model on a list of edge devices. We implement a CNN acceleration

framework that adapts to the changes of computational resources

and network conditions. Experimental evaluations show up to 1.9×

∼ 3.7× speedup can be achieved on 8 devices for three popular CNN

models.

In future work we plan to expand this framework to other de-

vices, including low-power accelerators such as the Google Edge

TPU. We will also develop fault-tolerance solutions that can cope

with compute nodes unpredictably failing or being temporarily

unavailable.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

feedback. This work was supported in part by NSF XPS Award

60053525.

REFERENCES
[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. Cnvlutin: ineffectual-neuron-free deep

neural network computing. In 43rd ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA). 1–13.

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer

CNN accelerators. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Press, 22.

[3] Amazon. [n.d.]. Machine Learning on AWS. https://aws.amazon.com/machine-

learning/.

[4] Apple. [n.d.]. Core ML. https://developer.apple.com/documentation/coreml.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations (ICLR).

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai

Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. DianNao: a small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 269–284.

[8] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Archi-

tecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In

43rd ACM/IEEE Annual International Symposium on Computer Architecture (ISCA).
367–379.

[9] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,

Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao:

A Machine-Learning Supercomputer. In 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 609–622.

[10] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural lan-

guage processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning (ICLR). 160–167.

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Train-

ing deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024 (2014).

[12] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,

Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: shifting vision

processing closer to the sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA). 92–104.

[13] Marat Dukhan. 2018. NNPACK. https://github.com/Maratyszcza/NNPACK.

[14] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-Aware Multi-

Tenant On-Device Deep Learning for Continuous Mobile Vision. In Proceedings
of the 24th ACM International Conference on Mobile Computing and Networking.
115–127.

[15] Raspberry Pi Foundation. [n.d.]. Raspberry Pi. https://www.raspberrypi.org/.

[16] Google. [n.d.]. Cloud Machine Learning Engine. https://cloud.google.com/ml-

engine/.

[17] Ramyad Hadidi, Jiashen Cao, Micheal S Ryoo, and Hyesoon Kim. 2019. Collabo-

rative Execution of Deep Neural Networks on Internet of Things Devices. arXiv
preprint arXiv:1901.02537 (2019).

[18] Ramyad Hadidi, Jiashen Cao, MatthewWoodward, Michael S Ryoo, and Hyesoon

Kim. 2018. Distributed Perception by Collaborative Robots. IEEE Robotics and
Automation Letters 3, 4 (2018), 3709–3716.

[19] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[22] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[23] Intel. [n.d.]. Movidius Neural Compute Stick. https://software.intel.com/en-

us/movidius-ncs.

[24] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon. 2018.

IONN: Incremental Offloading of Neural Network Computations from Mobile De-

vices to Edge Servers. In Proceedings of the ACM Symposium on Cloud Computing.
401–411.

[25] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring Hidden

Dimensions in Parallelizing Convolutional Neural Networks. arXiv preprint
arXiv:1802.04924 (2018).

[26] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason

Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between

the Cloud and Mobile Edge. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[27] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural

networks. arXiv preprint arXiv:1404.5997 (2014).

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[29] He Li, Kaoru Ota, and Mianxiong Dong. 2018. Learning IoT in edge: deep learning

for the internet of things with edge computing. IEEE Network 32, 1 (2018), 96–101.
[30] Robert LiKamWa, Yunhui Hou, Yuan Gao, Mia Polansky, and Lin Zhong. 2016.

RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vi-

sion. In 43rd ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA). 255–266.

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://developer.apple.com/documentation/coreml
https://github.com/Maratyszcza/NNPACK
https://www.raspberrypi.org/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs

SEC ’19, November 7–9, 2019, Washington, DC, USA L. Zhou et al.

[31] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram

Van Ginneken, and Clara I Sánchez. 2017. A survey on deep learning in medical

image analysis. Medical image analysis 42 (2017), 60–88.
[32] Dao-Fu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier

Temam, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. PuDianNao: A

Polyvalent Machine Learning Accelerator. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 369–381.

[33] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen.

2017. Modnn: Local distributedmobile computing system for deep neural network.

In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
1396–1401.

[34] Microsoft. [n.d.]. Azure Machine Learning service. https://azure.microsoft.com/

en-us/services/machine-learning-service/.

[35] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. 2018.

Deep learning for IoT big data and streaming analytics: A survey. IEEE Commu-
nications Surveys & Tutorials 20, 4 (2018), 2923–2960.

[36] Nvidia. [n.d.]. Jetson Nano. https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-nano/.

[37] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:

//pjreddie.com/darknet/.

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[39] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. arXiv
preprint (2017).

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252.

[41] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,

John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. 2016.

ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-

metic in Crossbars. In 43rd ACM/IEEE Annual International Symposium on Com-
puter Architecture (ISCA). 14–26.

[42] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[44] Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2017. Distributed deep

neural networks over the cloud, the edge and end devices. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). 328–339.

[45] TensorFlow™. 2019. TensorFlow for Mobile and IoT.

https://www.tensorflow.org/lite.

[46] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the

speed of neural networks on CPUs. In in Deep Learning and Unsupervised Feature
Learning Workshop, NIPS. Citeseer.

[47] Zirui Xu, Zhuwei Qin, Fuxun Yu, Chenchen Liu, and Xiang Chen. 2018. DiReCt:

Resource-Aware Dynamic Model Reconfiguration for Convolutional Neural Net-

work in Mobile Systems. In Proceedings of the ACM International Symposium on
Low Power Electronics and Design. 37.

[48] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,

and Scott Mahlke. 2017. Scalpel: Customizing DNN pruning to the underlying

hardware parallelism. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). 548–560.

[49] Qi Zhang, Lu Cheng, and Raouf Boutaba. 2010. Cloud computing: state-of-the-art

and research challenges. Journal of internet services and applications 1, 1 (2010),
7–18.

[50] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 6848–6856.

[51] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018.

DeepThings: Distributed Adaptive Deep Learning Inference on Resource-

Constrained IoT Edge Clusters. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2348–2359.

https://azure.microsoft.com/en-us/services/machine-learning-service/
https://azure.microsoft.com/en-us/services/machine-learning-service/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Abstract
	1 Introduction
	2 Background
	3 Distributing and Parallelizing DNN Inference at the Edge
	3.1 Model Parallelism and Partitioning
	3.2 Tradeoffs in Parallelizing CNNs in IoT Devices

	4 Adaptive Fused-layer Partition and Parallelization
	4.1 Problem Definition
	4.2 Cost Model
	4.3 Dynamic Programming-based Optimization
	4.4 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Partitioning Granularity in Fused-layer Parallelization
	5.3 Runtime Performance
	5.4 Analysis of Optimal Partitioning Strategies
	5.5 Robustness
	5.6 Generalizing to More DNNs

	6 Related Work
	7 Conclusion and Future Work
	References

