
Respin: Rethinking Near-Threshold Multiprocessor Design
with Non-Volatile Memory

Xiang Pan, Anys Bacha, and Radu Teodorescu
Department of Computer Science and Engineering

The Ohio State University
{panxi,bacha,teodores}@cse.ohio-state.edu

Abstract—Near-threshold computing is emerging as a
promising energy-efficient alternative for power-constrained
environments. Unfortunately, aggressive reduction in supply
voltage to the near-threshold range, albeit effective, faces a
host of challenges. This includes higher relative leakage power
and high error rates, particularly in dense SRAM structures
such as on-chip caches.

This paper presents an architecture that rethinks the cache
hierarchy in near-threshold multiprocessors. Our design uses
STT-RAM to implement all on-chip caches. STT-RAM has
several advantages over SRAM at low voltages including low
leakage, high density, and reliability. The design consolidates
the private caches of near-threshold cores into shared L1
instruction/data caches organized in clusters. We find that
our consolidated cache design can service more than 95% of
incoming requests within a single cycle. We demonstrate that
eliminating the coherence traffic associated with private caches
results in a performance boost of 11%. In addition, we propose
a hardware-based core management system that dynamically
consolidates virtual cores into variable numbers of physical
cores to increase resource efficiency. We demonstrate that this
approach can save up to 33% in energy.

I. INTRODUCTION

Power consumption is now a primary constraint in micro-
processor design spanning the entire spectrum of computing
devices. Steady increase in the number of cores coupled
with the growing inability to simultaneously activate most
units of the chip prompted many to predict the end of
traditional multicore scaling [1]. Such predictions emphasize
the need to explore energy-efficient architectures that can
continue to leverage advancements in process technology.
Near-threshold (NT) computing [2], [3] has emerged as a
potential solution for continuing to scale future processors
to hundreds of cores. Near-threshold operation involves low-
ering the chip’s supply voltage (Vdd) close to the transistor
threshold voltage (Vth). Although this approach results in
a 10× slowdown in chip speed, power consumption is
lowered by 100×, potentially resulting in a full order of
magnitude in energy savings. Unfortunately, near-threshold
computing suffers from a number of drawbacks. These
include decreased reliability, increased sensitivity to process
variation, and higher relative leakage power [2], [3], [4].

Although near-threshold operations dramatically reduce
power consumption, the contribution of dynamic and leakage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Nominal Vdd Near-Threshold Vdd

F
ra

ct
io

n
 o

f
T

o
ta

l
C

h
ip

 P
o
w

er

leakage-cache
leakage-core

dynamic-cache
dynamic-core

Figure 1: Dynamic and leakage power breakdown for a 64-
core CMP at nominal and near-threshold voltages.

components to the overall savings is not evenly distributed.
While dynamic power reduction is cubic as a function
of Vdd and frequency, leakage power only scales linearly.
Caches are leakage dominated structures [5] that can account
for 20% to 40% of the overall chip’s power consumption
depending on their size. Figure 1 shows the breakdown of
leakage and dynamic power within a 64-core CMP at both
nominal and NT Vdd. We observe that at a nominal Vdd of
1.0V, 14% of the total CMP power is attributed to cache
leakage and another 14% to cache dynamic power. Overall,
dynamic power represents 60% of the total CMP power
consumption. However, when the same CMP operates in
the near-threshold range, with a core Vdd of 400mV and a
cache Vdd of 650mV, leakage power dominates, accounting
for 75% of the total CMP power consumption. Close to
half that leakage power is consumed by caches. While these
numbers vary as a function of cache size, voltage and other
factors, we find that reducing cache leakage will result in
significant power savings at near-threshold voltages.

SRAM-based caches are generally the most vulnerable
structure within the chip and are especially sensitive to
low voltage. They are optimized for density and therefore
rely on the smallest transistor design available for a given
technology. While this approach enables larger cache ca-
pacities, it has the adverse effect of making such units

particularly vulnerable when operating at low voltages [6].
Process variation effects become increasingly pronounced as
a function of Vdd reduction [7]. Consequently, this creates
imbalances in the SRAM cells where a variety of failures can
occur including timing and data retention errors. Such error
rates are exacerbated in the near-threshold range, signifi-
cantly compromising the ability of caches to reliably store
data. Although a large body of error correction techniques
have been proposed to deal with the high error rates in
SRAM at low voltages [8], [4], the overhead associated with
such approaches in the near-threshold range makes them
inefficient.

This paper proposes a near-threshold chip multiproces-
sor design that uses Spin-Transfer Torque Random Access
Memory (STT-RAM) to consolidate on-chip caches. We find
STT-RAM to be an attractive candidate for implementing
near-threshold systems for several reasons including low
leakage, high density, and non-volatility [9], [10], [11],
[12]. At one eighth the leakage of SRAM designs, STT-
RAM based caches can operate at higher voltages and
still save energy as a result of non-volatility. Raising the
supply voltage has the advantage of alleviating the reliability
concerns typically associated with low Vdd. Moreover, the
inherently high write latencies of STT-RAM cells can be
efficiently tolerated due to the low clock speeds at which
near-threshold cores execute. This obviates the need for large
SRAM buffers to mitigate performance bottlenecks caused
by slow STT-RAM write speed [9], [13]. Moreover, unlike
phase-change memory (PCM) and NAND flash memories
[14], STT-RAM enjoys near-unlimited write endurance [10].

Based on these insights, we design a near-threshold chip
multiprocessor (CMP) that utilizes dual voltage rails that can
power processor cores and caches separately. We allocate
a Vdd rail in the near-threshold range to the processing
cores since they can operate at low frequencies. A second
high Vdd supply rail is dedicated to the STT-RAM cache.
This improves cache write latency relative to the cores.
Furthermore, with this approach cache read latencies are
substantially faster than the cycle time of the NT cores. This
allows L1 caches to be shared by clusters of multiple cores,
eliminating the need for cache coherence within the cluster.
We show that this improves both latency and energy relative
to traditional private cache designs. We redesign the shared
cache controller to time-multiplex requests from different
cores. The cluster size is chosen such that the vast majority
of the read requests are serviced within a single core cycle
to ensure no degradation in cache access latency.

The shared L1 cache enables another key feature of our
CMP design. Since the L1 is shared by all cores within a
cluster, migrating threads from one core to another has very
low overhead compared to private cache designs because
cached data is not lost in the migration. We take advantage
of this feature to further reduce energy consumption with
a dynamic core consolidation mechanism. The technique

dynamically co-locates threads on the most energy efficient
cores shutting down the less efficient ones depending on the
characteristics of the workload. A runtime mechanism uses a
greedy optimization that dynamically chooses the active core
count which minimizes energy consumption. The motivation
behind core consolidation is two-fold: (1) NTV cores have
high leakage and powering some of them off can sometimes
lead to net energy gains and (2) applications have low-IPC
phases during which multiple threads can be consolidated
on a single core with small impact on performance.

Evaluation using SPLASH2 and PARSEC benchmarks
shows 11% performance improvement with the shared cache
design and 33% combined energy savings with the dynamic
core consolidation optimization enabled.

Overall, this paper makes the following contributions:
• Proposes STT-RAM as a great candidate for saving

leakage and improving performance in near-threshold
chips. To the best of our knowledge, this is the first
work to use non-volatile caches in near-threshold chip
multiprocessors.

• Introduces a novel process variation aware shared cache
controller design that efficiently accommodates requests
from cores running at different frequencies.

• Presents a low overhead dynamic core consolidation
system that transparently virtualizes hardware resources
to save energy.

The rest of this paper is organized as follows: Sections
II and III present the design and implementation for the
proposed near-threshold CMP with STT-RAM caches. Sec-
tions IV and V describe experimental methodology and
evaluation. Section VI details some related work and Section
VII concludes.

II. NT CMP WITH STT-RAM CACHES

We design an NT CMP that uses STT-RAM for all on-chip
caches. Figure 2 illustrates the chip’s floorplan. The CMP is
organized in clusters within which all cores share single L1
and L2 caches. The clusters themselves share the last-level
cache (L3). The CMP makes use of two externally regulated
voltage domains. One domain, which contains the core logic
is set to low NT Vdd. The second, which encompasses the
entire STT-RAM cache hierarchy and a few logic units,
runs at high nominal Vdd. Note that two voltage domains
are generally needed for SRAM-based NTV systems also
because SRAM requires a higher voltage to operate reliably.

Running the STT-RAM caches at nominal Vdd dramati-
cally improves write speed relative to the NT cores, reducing
write latency from 10 cycles to about 3 cycles for a core
running at 500MHz. Level-shifters [15] are needed for all
cross voltage domain up-shift transitions (from low to high
voltage domain). The delay overheads introduced by these
circuits are compensated by the speed gain in the units
running at higher voltages. We account for the level-shifting
delay and power overhead in our evaluation.

Cluster 0

Core 0 Core 1 Core 2 Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core11 Core 15Core 14Core 13Core 12

Core 3

Cluster 2

Core 0 Core 1 Core 2 Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core11 Core 15Core 14Core 13Core 12

Core 3

Cluster 3

Core 0 Core 1 Core 2 Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core11 Core 15Core 14Core 13Core 12

Core 3

Cluster 1

Core 0 Core 1 Core 2 Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core11 Core 15Core 14Core 13Core 12

Core 3

L1D L1IL2 Cache L2 Cache

Core 0 Core 1 Core 2 Core 7Core 6Core 5Core 4

Core 8 Core 9 Core 10 Core11 Core 15Core 14Core 13Core 12

Core 3

NT Vdd High Vdd

(a)

L3 Cache

(b)

NT Vdd High Vdd

Figure 2: Floorplan of the clustered 64-core CMP design (a) with details of the cluster layout (b).

An additional benefit of the high voltage cache is that
read accesses are very fast relative to the core speeds. For
example, a 256KB STT-RAM L1 cache has a read speed
around 0.4ns (in line with data reported by recent work [9],
[10], [12]). The level shifters needed to access the high-Vdd
shared cache add some delay overhead (0.75ns according
to [15]). This overhead is incurred only when the voltage
is upshifted from the NT Vdd of the cores to the high Vdd
of the cache. Even with the level-shifting overhead (which
can be pipelined at the cache side), the cache response time
is significantly faster than the cycle time of the NT cores
(ranging between 1.6ns and 2.4ns).

We exploit the fast read speeds and share a single L1
instruction, L1 data, and L2 cache among all the cores for
each cluster. This is accomplished by running the shared L1
cache at a high frequency (2.5GHz in our experiments to
match the 0.4ns access time) and time-multiplexing requests
from the cores in each cluster. The main advantage of the
shared cache design is that coherence is no longer necessary
within each cluster. This greatly reduces the latency cost of
sharing data between threads that are executing on cores in
the same cluster. It also reduces coherence traffic, design
complexity, and energy cost.

The large core-to-core variation associated with NT opera-
tion [7], [16] makes the approach of limiting the entire CMP
to match the frequency of the slowest core very inefficient.
Since fast cores are almost twice as fast as slow ones, we
allow the respective cores across the CMP to run at the
highest frequencies they can achieve. To keep the design
cost effective, each cluster uses a single PLL for generating
its base clock. The reference clock that feeds this PLL is
based on the maximum frequency of the cache (e.g. 2.5GHz
corresponding to 0.4ns). The cores run at integer multiples
of the reference clock (e.g. 1.6ns, 2.0ns, 2.4ns) generated
through clock multipliers. As a result, all cache access
requests will align at cycle boundaries with the cache’s
reference clock, enabling the cache controller to efficiently
arbitrate between requests from different cores.

A. Time-Multiplexing Cache Accesses

The shared cache controller handles multiple parallel
requests from different cores using a form of time mul-
tiplexing. The primary goal of the cache controller is to
return read hit requests to individual cores within a single
core cycle. Since cores have cycle times, slower cores have
more time slacks to have their requests serviced compared
to faster cores. As a result, requests arriving at the same
time are ordered based on the frequency of the requesting
cores. Higher frequency cores are serviced first, while re-
quests from slower cores receive lower priority. If the cache
bandwidth is exceeded and a hit request cannot be serviced
in time, a “half-miss” response is sent to the core and the
request is serviced in the following cycle. In our evaluation,
only about 4% of cache acesses result in half-misses.

Figure 3 shows an example of how multiple access
requests from cores that are using different clock periods
(1.6ns-2.4ns) are handled by a shared cache operating at
2.5GHz (0.4ns clock period). A cycle-by-cycle timeline of
such requests is outlined in Figure 3 (a). In this figure, each
request is associated with a line segment that represents
the cycle time of the original core that issued it. This is
a multiple of the reference clock that is used by the cache.
For instance, Core 0 is running at 625MHz, which means its
cycle time of 1.6ns is equal to 4 cache cycles. Since Core
0’s request is received in cycle 0, to ensure that the cache
responds within a single core clock cycle, the cache must
send the data (or miss signal) by the end of cycle 3. Each
core’s request takes 2 fast cache cycles (0.8ns) to arrive at
the cache due to wire and level-shifting overhead.

To keep track of all requests, the cache controller main-
tains a request register and a priority register for each core in
the cluster. The request register stores the requested address,
type, and the data for the read requests. The priority registers
are shift registers preloaded with a representation of the
number of fast cache cycles available for each request.
Figure 3 (b) shows a view of the priority registers for the
same example. For instance, for Core 0, which needs to be

Cache
CLK (0.4ns)

Core0 (1.6ns)
Core1 (2.4ns)
Core2 (1.6ns)
Core3 (1.6ns)
Core4 (2.0ns)

Core0 (1.6ns)
Core1 (2.4ns)
Core2 (1.6ns)
Core3 (1.6ns)
Core4 (2.0ns)

cycle 0 cycle 1 cycle 2 cycle 3 cycle 4
service C0

(a)

(b)

service C2 service C4service C3
half-miss C3

cannot service
C3 in time

service C1

Cache
CLK (0.4ns)

cycle 0 cycle 1 cycle 2 cycle 3 cycle 4

half-miss C3

cycle 5 cycle 6

Level-shifting overhead

Level-shifting overhead

Request serviced

cycle 5 cycle 6

00011
01111

00011
00111

00001
00001

00001 00001
half-miss

00111 00011 00001

00011

00011

service C0 service C2 service C4service C3 service C1

Figure 3: Example timeline of access requests from cores
running at different frequencies to a shared cache running
at high frequency.

serviced in two cache cycles, the request register is preloaded
with “00011”. Note that the cycles required to service each
request account for the level shifting overhead. In other
words, even though Core 0’s request needs to be serviced
in 1.6ns or four cache cycles, two of those are spent in the
level shifters and wires. The remaining two are recorded in
the priority register. For Core 1’s request, which needs to
be serviced in four cache cycles, the register is preloaded
with “01111”. All priority registers are right-shifted by one
position each cache cycle to indicate a reduction in the
available time for all unserviced requests.

At the end of cycle 2, the cache has three requests from
Core 0, Core 2, and Core 3, out of which the cache can
only service one. The cache controller picks the request
that expires the soonest (i.e. the one with the fewer “1”
bits) using simple selection logic. In this example all three
requests have equal priority so the cache randomly chooses
to service Core 0. This is indicated by the red “checkmarks”
in Figure 3 (a) and the red rectangles in Figure 3 (b).
The priority register corresponding to Core 0 is cleared and
becomes available for a new request in the following cycle.

In cycle 3, the requests from Core 2 and Core 3 are both
critical, meaning they have to be serviced in the current
cycle (priority register is “00001”). Since the cache can only
service one request it will choose Core 2’s. A “half-miss”
event will be sent to Core 3 to indicate that the request could
not be fulfilled in a single cycle, but this is not necessarily
an L1 miss. Core 3’s request will be rescheduled through a
reinitialization of the priority register. To increase its priority
the register will be initialized to a lower value (in this
example “00001”). Core 3’s request will be serviced in cycle
4, which corresponds to a 2-cycle total hit latency. Requests
from Core 4 and Core 1, issued in cycle 1 will be serviced

System Firmware (ACPI)

Core Remapper

Filter Power Control

VC 0VC 2VC 3VC 4VC 13VC 14VC 15 . . .

Virtual Cores

VC 1

Retired Inst.

Energy

0
1
…

15
14
…

WeightPhy. ID

0
1
…

3
2
…

Phy. IDVirt. ID

Energy Table ID Map

OFFOFFVC 3VC 15VC 13VC 14 . . .

Physical Cores

C 0C 1C 2C 3C 4C 13C 14C 15 . . .

VC 1
VC 2

VC 0
VC 4

OFF
OFF
…

Status

Virtual Core
Monitor

OS

Figure 4: Overview of the virtual core management system
integrated in one cluster.

in their priority order in cycles 5 and 6 respectively.

III. DYNAMIC CORE MANAGEMENT

The shared L1 cache design significantly reduces the
performance overhead of migrating threads within the same
cluster. This is because no cache data is lost after the
migration. We take advantage of this feature to further
reduce energy consumption with a dynamic core consolida-
tion mechanism. The motivation behind core consolidation
stems from the fact that NT cores exhibit high variability
in maximum operating frequency. They also have a high
ratio of leakage to dynamic power. As a result, cores that
achieve a higher frequency at the same voltage are more
energy efficient that then the low-frequency ones. In some
situations it is therefore more energy efficient to power off
the least efficient cores and consolidate their threads to the
more efficient ones. This is generally true in low-IPC phases.

A. Core Virtualization

We find that low-IPC execution phases are relatively
short and therefore taking advantage of them requires a
low overhead, fast reacting mechanism for migrating threads
and shutting down cores. We present a new hardware
management mechanism that dynamically consolidates cores
through a virtualization extension. The proposed system
takes advantage of shared resources to transparently remap
running applications across a set of heterogeneous cores.

Implementing this management system in hardware as
opposed to the OS enables faster response times and lower
performance overhead. In addition, the hardware-based core
consolidation system is transparent to the OS and does not
require OS intervention or support. This makes the solution
easily deployable and backward compatible irrespective of
the underlying hardware differences. Figure 4 depicts an
overview of how our core management system would be
integrated into a chip multiprocessor.

Figure 5: Greedy selection for dynamic core consolidation.

A key feature of our design is the ability to autonomously
and transparently migrate threads to different physical cores
without OS intervention. To that end our system makes
use of virtual cores that provide a homogeneous view of
processor resources to the OS. The virtual resources are
made visible to the OS via the Advanced Configuration and
Power Interface (ACPI) available within system firmware.

The core consolidation mechanism dynamically shuts
down physical cores following an energy optimization al-
gorithm. However, from the OS point of view, all virtual
cores are always available. If some physical cores are off, a
core mapping mechanism assigns multiple virtual cores to a
single physical core.

B. Energy Optimization Algorithm

An energy monitoring and optimization system is imple-
mented in firmware running on a dedicated on-chip micro-
controller that is deployed in many of today’s processors
[17] for energy management.

A virtual core monitor (VCM) block, shown in Figure 4 is
responsible for monitoring the energy per instruction (EPI)
for each virtual core using hardware performance counters.
The VCM also runs the energy optimization algorithm
designed to dynamically search for the optimal number of
active cores.

A simple greedy search algorithm (illustrated in Figure
5) guides the energy optimization. Execution is broken
down into multiple epochs. At the end of each epoch the
algorithm decides whether a physical core should be shut
down, turned on, or if nothing needs to change. The EPI of
the current epoch is compared to that of the previous one. If
the difference exceeds a predefined threshold, then physical
cores are either turned off or on.

The system starts with all physical cores on for an entire
epoch. At the end of the first epoch, one physical core is
shut down and its virtual core migrated to another core.
The new EPI is measured at the end of the epoch. If
energy is lower, the greedy search continues by progressively
shutting down additional cores. If energy is higher, the
search reverses direction. If EPI difference between the
current and previous epoch is lower than the threshold, the
current state is maintained for the next epoch. This is done
to avoid excessive state changes for minor energy benefits.

In addition, the algorithm applies an exponential back-off
to eliminate unnecessary oscillations between neighboring
states. The history of recent state changes within each cluster
is recorded. If the system detects an oscillating pattern, it
exponentially increases the number of epochs during which
it will hold the current state before attempting a state change
(e.g. 2, 4, 8, 16, and 32 epochs).

C. Virtual Core Consolidation

Core consolidation within a cluster is handled by the
core remapper module depicted in Figure 4. Whenever a
power down/up event is required, the remapper examines
the pool of active physical cores. An energy efficiency
score is precomputed and recorded in a table. The score
is determined based on the frequency of the core. Faster
cores are more energy efficient because they can achieve a
lower energy per instruction at the same voltage than lower
frequency cores. The primary reason is that the high leakage
power that dominates NT cores is a fixed cost independent
of frequency. Using the energy profile, the system will turn
off the least efficient active core, or turn on the most efficient
inactive core as dictated by the greedy search.

Once a core is marked for deconfiguration, the remapper
assigns one of the remaining active physical cores as a
host for the unassigned virtual core. To keep the design
simple, allocations to active physical cores are performed
in a round robin fashion. We start allocations with the most
efficient core (fastest) and move down to the least efficient
one (slowest). This means that multiple virtual cores are
more likely to be consolidated on the faster physical cores,
thus alleviating the performance impact of consolidation.

The migration of the virtual core follows two main phases.
In the first phase, the deconfigured core stops fetching new
instructions and saves the next PC into a consolidation
register. The core continues to execute instructions until all
in-flight instructions are committed. The register file content
is then saved. In the second phase, the target physical core
is interrupted and the register file image and the PC are
transferred. Execution resumes on the new core. Once the
remapping is complete, the virtual-to-physical ID map is
updated accordingly to reflect the new association. A request
is then issued to the power control module to power gate the
deconfigured core. A similar migration process is followed
when a new physical core is activated and a virtual core is
migrated to it.

If multiple virtual cores are mapped to a single physical
resource, hardware-based context switches are performed at
regular intervals that are much smaller than the typical OS
context-switch interval. This ensures fairness and uniform
progress of the virtual cores such that they all appear to be
running simultaneously.

D. Mitigating Core Consolidation Overhead

There are a few sources of potential performance overhead
associated with our core consolidation mechanism. The
biggest potential cost for our remapping scheme is the loss
of data stored in local caches. If remapping is frequent,
“cold-cache” effects can severely degrade performance. In
our CMP design, we restrict the remapping of virtual cores
to occur only within clusters. This means that application
level threads that are associated with virtual cores don’t lose
any data locality since the entire cache hierarchy is shared
at the cluster level.

Another source of overhead is the loss of architectural
state associated with each individual thread including branch
prediction history and on-chip data stored in register files or
reorder buffers. After every consolidation the architectural
information of each newly remapped thread is lost. It takes
tens of cycles to rebuild those states before the thread can
perform any useful work. Therefore if remapping occurs too
frequently, the overall performance can suffer. We address
this issue by carefully choosing a reasonable consolidation
interval. With experiments we find that remapping performed
every 160K instructions carries only a small performance
penalty and returns optimal energy savings.

Finally, another potential source of overhead is related to
the action of powering on cores. After a core is turned on
from a power-gated state, voltage noise can cause timing
errors [18]. To prevent that, the core is stalled for a brief
period of time. However, because the cores run at NT voltage
and their power is relatively low compared to their available
capacitance the noise is small. As a result the penalty for
voltage stabilization is only about 10-30ns [7] or 5-15 cycles
for a core running at 500MHz.

All types of overheads discussed above are properly
reflected in our design and included in the evaluation results
shown in Section V.

IV. EVALUATION METHODOLOGY

We modeled a 64-core CMP with a range of cluster sizes
from 4 to 32 cores. Most experiments were conducted with a
cluster size of 16 cores, which we found to be optimal. We
also experimented with three cache configurations: small,
medium, and large. The size of the caches were chosen to
provide between 1MB (small) and 4MB (large) of cache for
each core, in line with existing commercial designs [17],
[19]. Also in line with existing designs, our medium cache
configuration accounts for approximately 25% of the total
chip area. In the large configuration the total cache area
represents 50% of the chip area. Most of our results are
reported for the medium cache configuration. The small and
large are included for reference and trend analysis. Table I
summarizes our cache configurations at different levels.

In our experiments each core has a dual-issue out-of-
order architecture. We used SESC [20] to perform all of
our simulations. We collected runtime, power, and energy

Hierarchy Size Block Assoc. Rd/Wr
Size Ports

L1I (Private/ 16KB (Private)/
Shared w/i 256KB (Shared 32B 2-way 1/1
Cluster) w/i Cluster)
L1D (Private/ 16KB (Private)/
Shared w/i 256KB (Shared 32B 4-way 1/1
Cluster) w/i Cluster)
L2 (Shared 8MB (Small)/
w/i Cluster) 16MB (Medium)/ 64B 8-way 1/1

32MB (Large)
L3 (Shared 24MB (Small)/
w/i Chip) 48MB (Medium)/ 128B 16-way 1/1

96MB (Large)

Table I: Summary of cache configurations.

CMP Architecture
Cores 64 out-of-order
Fetch/Issue/Commit Width 2/2/2
Register File Size 76 int, 56 fp
Instruction Window Size 56 int, 24 fp
Reorder Buffer Size 80 entries
Load/Store Queue Size 38 entries
NoC Interconnect 2D Torus
Coherence Protocol MESI
Consistency Model Release Consistency
Technology 22nm
NT-Vdd 0.4V (Core), 0.65V (Cache)
Nominal-Vdd 1.0V
Core Frequency Range 375MHz-725MHz
Median Core Frequency 500MHz

Variation Parameters
Vth std. dev./mean (σ/µ) 12% (chip), 10% (cluster)

Table II: CMP architecture parameters.

information. Table II summarizes the baseline architec-
ture configuration parameters. NVSim [21] combined with
CACTI [22] was used to obtain STT-RAM latency, en-
ergy, and area. Similarly, per access energy for all SRAM
memory structures including register file, reorder buffer,
load/store queue, and instruction window were extracted
through CACTI. McPAT [5] was used to model energy per
access for all CMOS logic units such as ALUs and FPUs. We
included a model for leakage power based on estimated unit
area and technology (CMOS vs. MTJ). This information was
inserted into SESC’s activity model in order to obtain total
power and energy consumption. Table III lists the technology
parameters we obtained from NVSim and CACTI for various
types of L1 data caches. The cache areas reported take
into account the higher density of STT-RAM compared to
SRAM. We rounded STT-RAM cache read latency up to
0.4ns to align clock edges between the shared cache and
cores. Parameters of other cache hierarchies are similarly
simulated and properly fed into our architecture simulations.

Two benchmark suites were adopted in the evaluation:
SPLASH2 and PARSEC. SPLASH2 (barnes, cholesky, fft,
lu, ocean, radiosity, radix, raytrace, and water-nsquared)
was configured to run with reference input sets. PARSEC
(blackscholes, bodytrack, streamcluster, and swaptions), on

Vdd Area Rd/Wr Rd/Wr Leakage
Rail (mm2) Lat. (ps) Eng. (pJ) (mW)

SRAM Low 0.9176 1337 2.578 573(16KB×16) (0.65V)
SRAM High 0.9176 211.90 6.102 881(16KB×16) (1.0V)
SRAM High 0.9176 533.60 42.41 881(256KB) (1.0V)
STT-RAM High 0.2451 388.20/ 29.32/ 114(256KB) (1.0V) 5208 209.30

Table III: L1 data cache technology parameters.

Configuration & Description
PR-SRAM-NT NT chip with SRAM private L1(I/D)
(baseline) cache and shared L2/L3 cache
HP-SRAM-CMP Traditional high-performance CMP with
(alt. baseline) cores and caches at nominal Vdd

SH-SRAM-Nom NT core with nominal Vdd SRAM shared
L1(I/D) cache and shared L2/L3 cache

SH-STT SH-SRAM-Nom with all caches built
in STT-RAM

SH-STT-CC SH-STT that performs hardware-managed
dynamic core consolidation

SH-STT-CC-Oracle SH-STT-CC with oracle knowledge for
dynamic core consolidation

PR-STT-CC SH-STT-CC with private L1(I/D) cache

SH-STT-CC-OS SH-STT-CC with OS-managed dynamic
core consolidation

Table IV: Architecture configurations used in the evaluation.

the other hand, was launched with sim-small input sets. We
used VARIUS [23] to model variation effects on threshold
voltages (Vth) across the CMP. We generated distributions of
core frequencies that were used in the simulations.

V. EVALUATION

In this section we show performance and energy benefits
of the proposed architecture. We also include sensitivity
studies on optimal cluster size, shared cache behavior, and
dynamic core consolidation mechanism. For easy reference,
Table IV summarizes all the architecture configurations used
in our evaluation.

A. Power Analysis

Figure 6 shows the reduction in power consumption from
the proposed STT-RAM-based CMP architecture without
dynamic core consolidation (SH-STT). Since the power
savings we obtain are dependent on the size of the cache, we
show results for three cache configurations (Table I): small,
medium, and large. The medium size cache is the most
typical one, with about 2MB/core of total cache capacity.
In this configuration, the cache accounts for approximately
25% of the chip area.

We compare to a baseline that uses SRAM caches running
at a low voltage rail (0.65V) in a traditional private cache
hierarchy (PR-SRAM-NT). This is the most typical near-
threshold CMP design. The reason why SRAM caches run
at a higher voltage rail is to ensure acceptable reliability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

PR-SRAM-NT

SH-SRAM-Nom

SH-STT
PR-SRAM-NT

SH-SRAM-Nom

SH-STT
PR-SRAM-NT

SH-SRAM-Nom

SH-STT

N
o
rm

al
iz

ed
 T

o
ta

l
C

h
ip

 P
o
w

er

Small Cache Medium Cache Large Cache

leakage dynamic

Figure 6: Power reduction of proposed design for three
L2/L3 cache sizes: small, medium, and large.

since SRAM caches running at NT Vdd would be unusable
without cell resizing or strong error correction [24], [4] –
both of which carry significant overheads.

We can see that power is lower for SH-STT compared
to the baseline in all configurations. The reduction in total
power comes from lower leakage power at the cost of
slightly increased dynamic power (due to nominal voltage
STT-RAM reads and the high cost of STT-RAM writes). For
the small cache configuration the power is only about 2.1%
lower. For the medium and large configurations the power
savings are significant, at 12.9% and 22.1% respectively.

Figure 6 also shows a breakdown of leakage and dynamic
power for each configuration. We can see that for STT-RAM,
even though dynamic power is higher due to the nominal
voltage cache operations, the reduction in leakage power
compensates for it in all three cache size configurations.

For reference, we also compare to an SRAM design in
which the cache is shared and also running at nominal
voltage (SH-SRAM-Nom), the same configuration used by
our proposed design but with SRAM caches. This ensures
reliable operation but is costly in terms of power. SH-
SRAM-Nom uses between 22% and 65% more power than
SH-STT for the three cache sizes. This is due to the
much higher leakage power consumed by SRAM running
at nominal voltage.

B. Performance Analysis

The shared cache design brings significant performance
improvements compared to the baseline system. Figure 7
shows the execution time of the proposed STT-RAM design
(SH-STT) with medium-sized cache. The results are normal-
ized to the PR-SRAM-NT baseline. Process variation effects
(core frequency distributions) are modeled in all configura-
tions. We can see that the SH-STT configuration reduces
execution time by an average of 11%. This performance
improvement is due to the benefits of within-cluster cache
sharing. Applications that benefit the most are those in which
there is significant data sharing and reuse such as raytrace.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

barnes
cholesky

fft lu ocean
radiosity

radix
raytrace

water-nsquared

blackscholes

bodytrack

streamcluster

swaptions

GeoMean

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

PR-SRAM-NT
HP-SRAM-CMP

SH-SRAM-Nom
SH-STT

Figure 7: Relative runtime of SPLASH2 and PARSEC
benchmarks for various designs with medium-sized cache.

Applications such as ocean also benefit significantly because
they make heavy use of synchronization (ocean has hundreds
of barriers). Synchronization is much faster in the shared
cache design because it involves much less coherence traffic.

We also compare SH-STT to SH-SRAM-Nom (as before)
and we add another baseline, HP-SRAM-CMP. HP-SRAM-
CMP represents a conventional high-performance design in
which the entire CMP (cores plus caches) run at nominal
voltage. Figure 7 shows that compared to SH-SRAM-Nom
our proposed SH-STT design achieves marginally better
performance (1.2% on average) because of slightly faster
read speed of STT-RAM compared to SRAM. The high-
performance HP-SRAM-CMP achieves the lowest execution
time because it runs at high voltage and high frequency. This
performance, however, comes at a much higher energy cost.

C. Energy Analysis

Our design reduces both power consumption and execu-
tion time resulting in important energy savings. Figure 8
shows that SH-STT has between 13% and 31% lower energy
than PR-SRAM-NT baseline depending on cache sizes. As
expected we see larger energy savings for larger cache sizes.
We also show that the SH-SRAM-Nom configuration which
uses shared SRAM caches at nominal Vdd uses 8-16% more
energy than the NT SRAM baseline (PR-SRAM-NT).

Figure 9 shows the energy breakdown by benchmark for
our designs with the medium-sized cache relative to the PR-
SRAM-NT baseline. The shared STT-RAM cache design
(SH-STT) reduces energy by an average of 23%. This is
in stark contrast with a similar shared cache configuration
that uses SRAM at nominal Vdd (SH-SRAM-Nom), which
increases energy by 12%. The high-performance baseline
HP-SRAM-CMP consumes 40% more energy on average
than the PR-SRAM-NT baseline. Relative to HP-SRAM-
CMP, our SH-STT design has an average of 45% lower
energy consumption. When we add dynamic core consol-
idation (SH-STT-CC), we reduce energy by an additional
10% for a combined 33% reduction relative to PR-SRAM-
NT (51% reduction relative to HP-SRAM-CMP).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

Small Cache Medium Cache Large Cache

N
o

rm
al

iz
ed

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

PR-SRAM-NT SH-SRAM-Nom SH-STT

Figure 8: Energy consumption for small, medium, and large
L2 and L3 cache configurations.

We also include an oracle version of the dynamic core
consolidation solution (SH-STT-CC-Oracle) to show the lim-
its of our greedy-search-based energy optimization. We ob-
tained SH-STT-CC-Oracle by choosing the optimal number
of cores to consolidate at each evaluation interval. SH-STT-
CC-Oracle reduces energy consumption by 36%. The small
3% difference between the Oracle and our implementation
is due to the slight sub-optimality of the greedy search we
perform. Overall it is a small penalty to pay for a fast
optimization that can be deployed in production systems.

Figure 9 also compares the energy reduction of SH-STT-
CC relative to other possible alternatives for implementing
core consolidation. PR-STT-CC shows the energy of a
solution that attempts core consolidation with private STT-
RAM caches. Because of the overhead of consolidating cores
with private caches (which results in loss of cache locality
after consolidation), PR-STT-CC reduces energy by only
24% compared to 33% for SH-STT-CC.

We also compare with an approach in which core con-
solidation is handled by the OS at coarser time intervals
(1ms). SH-STT-CC-OS does not require any hardware sup-
port since consolidation is controlled by the OS. However,
because consolidated threads are context-switched at coarser
intervals, critical threads can easily bottleneck the entire ap-
plication when they are not running. This hurts performance
significantly to the point where energy actually increases by
27% compared to SH-STT.

D. Optimal Cluster Size

A key parameter for our design is the cluster size. We
run simulations with cluster sizes of 4, 8, 16, and 32 cores.
Table V summarizes the results. Note that, as we increase
the cluster size we also proportionally increase the shared
L1 cache size. For the entire CMP, the total core count and
the sum of all L1 cache capacities remain constant.

Performance improves in SH-STT when going from 4 to
16 cores per cluster by 5% to 11% compared to PR-SRAM-
NT baseline. This is due to the increased opportunity for
data sharing and reduced coherence traffic. The downside is
increased bandwidth pressure on the shared cache. When the

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

barnes
cholesky

fft lu ocean
radiosity

radix raytrace
water-nsquared

blackscholes

bodytrack
streamcluster

swaptions
GeoMean

N
o
rm

al
iz

ed
 E

n
er

g
y
 C

o
n
su

m
p
ti

o
n

1.78 1.80 2.42 1.66 4.05

PR-SRAM-NT
HP-SRAM-CMP

SH-SRAM-Nom
SH-STT

SH-STT-CC
SH-STT-CC-Oracle

PR-STT-CC
SH-STT-CC-OS

Figure 9: Energy consumption for SPLASH2 and PARSEC benchmarks with a core consolidation interval of 160K instructions
and a medium-sized L2 and L3 cache.

Cluster Size Shared Cache Size Performance Gain
(#cores) (KB) (%)
4 64 4.82
8 128 6.29
16 256 10.81
32 512 2.50

Table V: Cluster size impact on performance.

cluster size is increased to 32 cores, performance improve-
ment drops to only 2.5%. The larger cache size (512KB for
32 cores vs. 256KB for 16 cores) has higher access latency
and lower bandwidth. At the same time the number of cores
goes from 16 to 32, generating a lot more requests and
overwhelming the reduced bandwidth. The optimal cluster
size for this design is therefore 16 cores.

E. Shared Cache Impact on Access Latency

The shared cache design cannot guarantee single cycle
access to all cache read hits. If requests cannot be serviced
in the equivalent of a core cycle, a “half-miss” response
is returned to the core. In order to better understand the
impact of the shared cache contention on access latency, we
conducted two sets of experiments.

The first experiment measures cache utilization by looking
at the number of requests arriving at the shared cache each
cycle. Figure 10 shows percentage of the total cache cycles
in which a given number of requests arrive at the shared
cache. We count all requests handled by the cache including
reads, writes, line fills, etc. We show numbers for five
different benchmarks and the arithmetic mean of all our
benchmarks.

We can see that, on average, almost half of the cache
cycles (49%) have no incoming requests, 21% with one
request, 15% with two requests, 9% with three requests, and
6% with more than four requests. This shows that requests
exceeding the number of available ports (1 read/1 write)
occur in about 30% of the cache cycles. However, these are

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 >=4

P
er

ce
n
ta

g
e

o
f

T
o
ta

l
C

ac
h
e

C
y
cl

es

Number of Requests Arriving at Shared-DL1 Cache

cholesky
radix

raytrace

blackscholes
streamcluster

AVERAGE

Figure 10: Shared DL1 cache utilization rate in one cluster.

fast cache cycles and each requesting core has considerable
time slacks in which to receive a response. As a result, most
of these requests will not receive a delayed response.

Figure 11 shows a histogram of the percentages of read
hit requests serviced in 1, 2, or more core cycles. We can
see that the vast majority of requests are handled in 1 cycle
(95.8%). About 4% of requests result in half-misses and
over 99% of those are handled in 2 cycles. As a result, the
performance impact of the cache contention is small, and
more than compensated by the benefits of the shared cache.

F. Dynamic Core Consolidation

Figure 12 shows a detailed runtime trace of radix when
performing dynamic core consolidation. We show traces for
both SH-STT-CC and SH-STT-CC-Oracle to compare the
effectiveness of our consolidation mechanism. We can see
that except for a few data points, our consolidation trace
matches very well with the oracle trace. This leads to very
close energy savings for SH-STT-CC (48%) and SH-STT-
CC-Oracle (50%) compared to PR-SRAM-NT baseline.

Occasionally the greedy search does not respond suffi-
ciently fast to keep up with workload changes, whereas the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 >=3P
er

ce
n
ta

g
e

o
f

S
h
ar

ed
-D

L
1
 R

ea
d
 H

it
 R

eq
u
es

ts

Number of Core Cycles Serviced

cholesky
radix

raytrace

blackscholes
streamcluster

AVERAGE

Figure 11: Fraction of read hit requests serviced by the
shared DL1 cache in 1, 2, or more core cycles.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f

O
F

F
 C

o
re

s

Number of Million Instructions

SH-STT-CC SH-STT-CC-Oracle

Figure 12: Core consolidation trace of radix.

oracle adapts immediately. This can be observed in bench-
marks such as lu, shown in Figure 13. The greedy search
gradually searches for the optimal energy point, resulting in
some temporary sub-optimal behavior. As a result, for the
lu benchmark, our proposed SH-STT-CC design saves 29%
energy while SH-STT-CC-Oracle saves 38%.

Dynamic core consolidation takes advantage of the large
variability in application behavior both within and across
workloads. To illustrate this, Figure 14 shows the average
number of active cores in a cluster for each benchmark.
We can see that on average only 10 out of 16 cores
in a cluster are used. Note that, however, there is high
variability in the number of active cores both across and
within benchmarks. The markers on each bar indicate the
range of active cores throughout the execution. The startup
phase of each benchmark is excluded. We can see that for
most benchmarks, core consolidation takes advantage of the
full dynamic range from 16 to 4 active cores per cluster.
Some exceptions include radix which only activates 11 cores
per cluster at the most and blackscholes which never uses
fewer than 6 physical cores.

VI. RELATED WORK

The idea of STT-RAM caches in NT multiprocessors was
first proposed by the authors in an extended abstract [25].

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f

O
F

F
 C

o
re

s

Number of Million Instructions

SH-STT-CC SH-STT-CC-Oracle

Figure 13: Core consolidation trace of lu.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

barnes
cholesky

fft lu ocean
radiosity

radix
raytrace

water-nsquared

blackscholes

bodytrack

streamcluster

swaptions

AVG

A
v
er

ag
e

N
u
m

b
er

 o
f

A
ct

iv
e

C
o
re

s

SH-STT-CC SH-STT-CC-Oracle

Figure 14: Average number of active cores (and min and max
values) using core consolidation for SPLASH2 and PARSEC
benchmarks.

This paper greatly expands that initial idea with design
details, evaluation, and the core consolidation mechanism.
Previous work by Zhai et al. [26] has proposed grouping
several slower near-threshold cores into a cluster that shares
a faster L1 cache in order to eliminate cache coherence
traffic. This can speed up system performance and also
reduce coherence energy. In their design they applied a
relatively higher voltage to the shared SRAM L1 cache and
found the optimal energy efficiency configuration is 2 cores
per cluster with 2 clusters. They did not explicitly consider
variation effects or heterogeneous core frequencies in their
design. We use nominal voltage STT-RAM to build the
shared L1 cache. In our design the STT-RAM shared cache
is much faster than the cores, making much larger clusters
(16 cores) become optimal. In addition, our work takes
advantage of this shared cache design to perform dynamic
core consolidation to further optimize energy consumption.

Prior work [13], [14] has proposed implementing caches
with STT-RAM. They take advantage of its high-density
characteristic to build large capacity on-chip STT-RAM or
SRAM with STT-RAM hybrid caches. To the best of our
knowledge this is the first work that examines STT-RAM in
the context of near-threshold CMPs.

VII. CONCLUSION

This is the first paper to explore the use of STT-RAM
in near-threshold processors. We find STT-RAM to be an
ideal SRAM replacement at near-threshold for two reasons:
first, it has very low leakage, which dominates near-threshold
designs; second, it can efficiently run at nominal voltages,
avoiding the reliability problems of low-Vdd SRAM.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their feedback. This work was supported in part by
the National Science Foundation under grants CCF-1253933
and CCF-1629392, and the Defense Advanced Research
Projects Agency under the PERFECT (DARPA-BAA-12-24)
program.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark Silicon and the End of Multicore Scal-
ing,” in International Symposium on Computer Architecture
(ISCA), pp. 365–376, 2011.

[2] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s
Law Through Energy Efficient Integrated Circuits,” Proceed-
ings of the IEEE, vol. 98, pp. 253–266, February 2010.

[3] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey,
“Ultralow-Power Design in Near-Threshold Region,” Pro-
ceedings of the IEEE, vol. 98, pp. 237–252, February 2010.

[4] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodor-
escu, “Parichute: Generalized Turbocode-Based Error Correc-
tion for Near-Threshold Caches,” in International Symposium
on Microarchitecture (MICRO), pp. 351–362, 2010.

[5] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures,” in International Symposium on Microarchi-
tecture (MICRO), pp. 469–480, 2009.

[6] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A Sub-
200mV 6T SRAM in 0.13µm CMOS,” in International Solid-
State Circuits Conference (ISSCC), pp. 332–606, 2007.

[7] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodor-
escu, “Booster: Reactive Core Acceleration for Mitigating the
Effects of Process Variation and Application Imbalance in
Low-Voltage Chips,” in International Symposium on High
Performance Computer Architecture (HPCA), pp. 27–38,
2012.

[8] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-
L. Lu, “Improving Cache Lifetime Reliability at Ultra-Low
Voltages,” in International Symposium on Microarchitecture
(MICRO), pp. 89–99, 2009.

[9] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation:
Avoiding the Power Wall with Low-Leakage, STT-MRAM
Based Computing,” in International Symposium on Computer
Architecture (ISCA), pp. 371–382, 2010.

[10] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and
M. R. Stan, “Relaxing Non-Volatility for Fast and Energy-
Efficient STT-RAM Caches,” in International Symposium on
High Performance Computer Architecture (HPCA), pp. 50–
61, 2011.

[11] X. Pan and R. Teodorescu, “NVSleep: Using Non-Volatile
Memory to Enable Fast Sleep/Wakeup of Idle Cores,” in Inter-
national Conference on Computer Design (ICCD), pp. 400–
407, 2014.

[12] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer,
and C. R. Das, “Cache Revive: Architecting Volatile STT-
RAM Caches for Enhanced Performance in CMPs,” in Design
Automation Conference (DAC), pp. 243–252, 2012.

[13] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel
Architecture of the 3D Stacked MRAM L2 Cache for CMPs,”
in International Symposium on High Performance Computer
Architecture (HPCA), pp. 239–249, 2009.

[14] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and
Y. Xie, “Hybrid Cache Architecture with Disparate Memory
Technologies,” in International Symposium on Computer Ar-
chitecture (ISCA), pp. 34–45, 2009.

[15] J. Garcia, J. Montiel-Nelson, J. Sosa, and S. Nooshabadi,
“High Performance Single Supply CMOS Inverter Level
Up Shifter for Multi-Supply Voltages Domains,” in Design
Automation and Test in Europe (DATE), pp. 1273–1276, 2015.

[16] T. N. Miller, R. Thomas, and R. Teodorescu, “Mitigating
the Effects of Process Variation in Ultra-low Voltage Chip
Multiprocessors using Dual Supply Voltages and Half-Speed
Stages,” IEEE Computer Architecture Letters, vol. 11, July
2012.

[17] “Intel CoreTM i7 Processor.” http://www.intel.com.
[18] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu,

“VRSync: Characterizing and Eliminating Synchronization-
Induced Voltage Emergencies in Many-core Processors,” in
International Symposium on Computer Architecture (ISCA),
pp. 249–260, 2012.

[19] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer,
P. Gronowski, and T. Grutkowski, “A 32nm 3.1 Billion Tran-
sistor 12-Wide-Issue Itanium Processor for Mission-Critical
Servers,” in International Solid-State Circuits Conference
(ISSCC), pp. 84–86, 2011.

[20] “SESC Simulator.” http://sesc.sourceforge.net.
[21] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-

Level Performance, Energy, and Area Model for Emerging
Nonvolatile Memory,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, pp. 994–
1007, July 2012.

[22] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches,” Tech. Rep.
HPL-2009-85, HP Labs, 2009.

[23] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano,
A. Tiwari, and J. Torrellas, “VARIUS: A Model of Parameter
Variation and Resulting Timing Errors for Microarchitects,”
IEEE Transactions on Semiconductor Manufacturing, vol. 21,
pp. 3–13, February 2008.

[24] H. R. Ghasemi, S. Draper, and N. S. Kim, “Low-Voltage
On-Chip Cache Architecture Using Heterogeneous Cell Sizes
for High-Performance Processors,” in International Sympo-
sium on High Performance Computer Architecture (HPCA),
pp. 38–49, 2011.

[25] X. Pan and R. Teodorescu, “Using STT-RAM to Enable
Energy-Efficient Near-Threshold Chip Multiprocessors,” in
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pp. 485–486, 2014.

[26] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and
D. Sylvester, “Energy Efficient Near-Threshold Chip Multi-
Processing,” in International Symposium on Low Power Elec-
tronics and Design (ISLPED), pp. 32–37, 2007.

	Introduction
	NT CMP with STT-RAM Caches
	Time-Multiplexing Cache Accesses

	Dynamic Core Management
	Core Virtualization
	Energy Optimization Algorithm
	Virtual Core Consolidation
	Mitigating Core Consolidation Overhead

	Evaluation Methodology
	Evaluation
	Power Analysis
	Performance Analysis
	Energy Analysis
	Optimal Cluster Size
	Shared Cache Impact on Access Latency
	Dynamic Core Consolidation

	Related Work
	Conclusion
	References

