
1

The Case for Native Instructions in the Detection of Mobile
Ransomware

Nada Lachtar, Duha Ibdah, and Anys Bacha Member, IEEE

Abstract—Recently, the mobile segment observed the emergence of a new class of malware known as ransomware. In 2017, more
than 468,830 unique mobile ransomware samples were discovered marking a 415% year-over-year increase in new ransomware. This
trend presents a major concern for mobile users as they increasingly rely on their devices to safeguard sensitive information. Previous
solutions have relied on high level bytecode and XML-based permission files to detect malicious applications. Unfortunately, attackers
are resorting to obfuscation techniques that involve repackaging apps with malicious content directly in native machine code. As such,
the aforementioned methods are insufficient for detecting modern mobile ransomware. To address these concerns, this work evaluates
the effectiveness of using native instructions in detecting ransomware. We characterize different machine learning models and
demonstrate that opcodes in native instructions can be used for detecting mobile ransomware with near ideal accuracy. In addition, we
make the observation that the number of instruction opcodes that contribute to the detection of ransomware is significantly less than
the full range of supported opcodes within a contemporary instruction set. Finally, we evaluate the robustness of our approach against
six different ransomware families available in a state-of-the-art Android malware dataset.

Index Terms—Ransomware, Android Malware, Mobile Security, Instruction Set Architecture, Machine Learning

F

1 INTRODUCTION

S Ecurity has become a critical design factor for computing
systems today. As more of our personal data is collected,

created, and consumed through interconnected devices, infor-
mation security is becoming increasingly important. The rapid
growth in mobile applications and their underlying devices is
driving the need for scalable designs that can autonomously
safeguard digital content from malicious software.

It was estimated that in 2017, over 48 million apps were
downloaded per day with the Android platform representing
the largest segment of active devices consuming such mobile
apps [1]. With Android being the dominant mobile platform
possessing over 87% of the market share, cybercriminals have
shifted their efforts towards tailoring malicious apps that can
exploit this environment. For instance, Google announced that
it withdrew 700,000 bad applications from its Google Play store.
This occurred despite all the security measures Google has in
place before developers can make their apps publicly available.
This underscores the need for device level protection that can
counter such malicious applications and serve as an additional
layer of defense. This trend is exacerbated by app downloads
from third parties such as Anzhi and AppChina that don’t offer
strict services to preclude malicious content from being added.
An experiment conducted by Allix et al. [2] demonstrated that
75% and 50% of app downloads from Anzhi and AppChina
respectively included malware.

Recently, the mobile segment observed the emergence of a
new class of malware known as ransomware. Ransomware is
a type of malware that involves encrypting the user’s data or
locking their device. The malware then extorts the victim to pay
a ransom in return for decrypting their data or unlocking their
device. According to Trend Micro, more than 468,830 unique
mobile ransomware samples were analyzed marking a 415%
increase in new ransomware relative to 2016 [3]. This trend
presents a major concern for mobile users as they increasingly
rely on their devices to safeguard sensitive information that

• The authors are with the Computer and Information Science Department,
the University of Michigan, Dearborn, MI, 48128.

they consume on a daily basis.
In this paper, we demonstrate the effectiveness of using

native instructions in detecting ransomware. We show that op-
codes in native instructions can be used as features for training
machine learning models to detect mobile ransomware with
high accuracy. We evaluate the effectiveness of this approach
by extensively testing different machine learning models on
the ARMv7 instruction set architecture. We show that the
proposed approach can achieve near ideal accuracy, offering
a detection rate of 99.8%. Finally, we evaluate the robustness
of our approach against six ransomware families available in a
state-of-the-art Android malware dataset [4].

Overall, this paper makes the following contributions:

• Evaluates the effectiveness and relevance of using native
instructions for detecting mobile ransomware using one
of the most popular instruction set architectures for
mobile devices, namely ARM.

• Characterizes multiple machine learning algorithms and
their application to detecting ransomware while show-
ing that near ideal detection accuracy can be achieved
using state-of-the-art Android malware dataset.

• Makes the observation that the number of instruction
opcodes that contribute to the detection of ransomware
is significantly less than the full range of supported
opcodes within a contemporary instruction set.

The rest of this paper is organized as follows: Section
2 provides background information. Section 3 presents the
methodology and results of our evaluation. Section 4 details
related work; and Section 5 concludes.

2 BACKGROUND

In this section, we provide the necessary background on the
Android environment and machine learning algorithms to
enable the reader to understand our learning-based detection
approach for defending against mobile ransomware.

https://orcid.org/0000-0001-6711-1280

2

2.1 The Android Platform

Android is an open source software stack that is optimized to
enable a wide range of mobile devices [5]. Although Android
is based on the Linux operating system, it consists of many
components that are uniquely tuned to enable the execution
of apps on mobile devices. Android applications are delivered
to the end user as a bundle known as the Android Package
Manager (APK). This package consists of various resources that
include a description of the resources the application consumes
and an executable in the form of Java bytecode. The Java
bytecode in Android is known as a Dalvik executable (dex
file). Once the package is installed, the app can interact with
the application framework layer. This layer is responsible for
providing apps with the various services it needs, such as the
sending of notifications and location information.

Another major component of the Android platform consists
of the Android Runtime system (ART). ART is a successor
to the Dalvik machine implementation that relied on just-
in-time (JIT) compilation techniques for running user apps.
Unlike the Dalvik machine, ART relies on ahead-of-time (AOT)
compilation for running apps. As such, instead of compiling
Java bytecode every time an app is launched in a JIT fashion,
ART compiles the code natively onto the device during the
installation process, then re-uses the machine code every time
the app is relaunched. This is accomplished by converting the
dex file into an OAT file (ahead-of-time file) through a dex2oat
module. This approach significantly speeds up application per-
formance (2x - 3x) compared to the JIT approach.

2.2 Supervised Learning

Machine learning algorithms can be broadly categorized into
one of three learning approaches: supervised, unsupervised,
and reinforced learning. In this paper, we focus on supervised
learning algorithms that are relevant to this work [6], [7].
Random Forest. A random forest is an ensemble learning algo-
rithm that relies on a collection of decision trees for classifying
data. Each tree within the random forest is constructed by
applying an algorithm A on a training set S. Predictions in a
random forest are generated through a majority vote of all the
predictions that are sourced from the individual decision trees.
Support Vector Machines (SVM). This is a discriminative
algorithm that searches for the best bisecting hyperplane that
maximizes the margin between classes. SVM relies on slack
variables ξ that dictate how many points the algorithm can
afford to misclassify during the training phase. We use the
linear SVM classifier which is expressed by equation (1). Here
x ∈ Rn is the input vector, w is a weight vector, b is the bias, C
is a regularization parameter, and y is the class label. We also
consider ”kernel tricks” (polynomial and radial basis functions
(RBF)) that can make data linearly separable by mapping them
into higher dimensional feature spaces.

min
w,ξ

(||w||2 + C

n∑
i=1

ξi) (1)

s.t. ∀i yi(w
Txi + b > 1− ξi and ξi > 0

K-Nearest Neighbors (KNN). KNN is a non-parametric ma-
chine learning algorithm that relies on proximity information
for classifying data. More formally, for a training set S consist-
ing of points and labels (x1, y1)...(xm, ym), then for each x, we
return the majority label among {yπi(x) : i ≤ k} where πi(x)
represents the ith closest point to x in distance.

Naı̈ve Bayes. This classifier is a generative algorithm that relies
on Bayes theorem for making predictions. Unlike discrimina-
tive models, generative models are concerned with learning the
underlying distribution of the data. As such, we are interested
in learning the probability P (x|y) instead of P (y|x) where y
is a label belonging to some finite set {0, 1, ...,m}. Because
we make the “naı̈ve” assumption that features of input x are
independent, the prediction for y = l where l ∈ {0, 1, ...,m} can
be expressed by equation (2). This equation allows for label l to
be predicted for a new input vector x ∈ Rn.

argmax
l

P (y = l)
n

Π
j=1

P (xj |y = l) (2)

Logistic Regression. This is an algorithm that models the
probability of a class with label l occurring, provided some
input x ∈ Rn. Since probabilities are non-linear in nature,
the algorithm employs a logistic function, σ (“sigmoid”) to
introduce non-linearity and produce a probability within the
range [0, 1]. As such, it uses a linear function that passes
through a sigmoid resulting in the following equation:

wTx = w0 + w1x1 + ...+ wnxn (3)

P (y = l|x) = σ(wTx) (4)

Where the sigmoid function is expressed as:

σ(z) =
1

1 + e−z
(5)

Artificial Neural Networks. This model consists of nodes inter-
connected through one or more layers that can be thought of as
a directed acyclic graph whose nodes correspond to neurons
and the edges correspond to the outputs. The output of a
neuron in a given layer is described through equation (6) where
w represents the weights of a neuron k in layer l, x ∈ Rn is an
input vector from the previous layer l − 1, and bk is a bias
input for the neuron. In our work, we use a rectified linear unit
(ReLU) as the activation function f described by equation (7).

hlk(x) = f(

n∑
j=1

wkjxj + bk) (6)

f(x) = max(0, x) (7)

3 EVALUATION

3.1 Experimental Framework
We conducted experiments using 2148 ransomware samples
available in [4]. In addition to ransomware samples available
in [4], we used data from [2] as a baseline for benign An-
droid apps. We allocated 80% of our dataset for training our
models and kept the remaining 20% for testing purposes. To
generate OAT files for the APK packages within our dataset,
we created a framework based on the Android Open Source
Project (AOSP) 6.0.1 release and built it with the userdebug
option for ARMv7. We created and tested models for all the
algorithms described in section 2. We used TensorFlow 1.8.0
and scikit-learn 0.19.1 libraries with Python 3.6 to implement
our models.

We tested our models with different parameters in order
to determine the optimal settings for each algorithm. Table
1 summarizes the optimal parameters that yielded the best
detection results in our evaluation. We tested our KNN model
with various settings for k ∈ [1, 60]. We explored multiple
configurations for our neural network. This included using two

3

hidden layers with the first layer set to 1024, 2048, and 4096
nodes and the second hidden layer set to 32,64,128, and 256.
We also ran experiments with three hidden layers using 1024
nodes in the first two hidden layers and 128 nodes in the third
hidden layer. Our random forest model was validated with a
range of decision trees between [1, 60]. Our SVM settings for
the polynomial and radial basis function algorithms were tested
with the degree and γ (variance parameter) parameters set to
3 and γ ∈ [10−6, 10−1] respectively.

Algorithm Parameters
Random Forest Estimators: 9
SVM RBF γ = 10−4

SVM Polynomial Polynomial degree: 3
KNN k: 2
Artificial hidden layer 1: 1024 nodes,
Neural Network hidden layer 2: 64 nodes, batch size: 10,

gradient method: Adagrad

TABLE 1: Summary of ideal model parameters used in the
evaluation.

3.2 Feature Selection and Training
A primary objective of our approach is to evaluate the ability
to defend against native code repackaged into mobile apps.
To this end, a key component in our evaluation relates to the
extraction and pre-processing of native opcodes from Android
applications and using them as features for our models. We
constructed features for ARMv7 instructions by building a
dictionary that consists of all the unique opcodes present in
15,126 Android apps. The baseline feature set that we used for
the ARM architecture included 5014 features. Furthermore, we
evaluated the impact of selecting different opcodes as features
on the accuracy of our models. To achieve this, we employed
dimensionality reduction techniques that rely on the Principle
Component Analysis (PCA) algorithm to determine the most
relevant features for detecting ransomware.

Prior to training our models, we pre-processed the dataset
that is initially in Dalvik bytecode form (classes.dex). Our
framework handled the conversion process of such dex files
into the corresponding OAT format. This process entails com-
piling the dex files into a format that conforms to a standard
Executable and Linkable Format (ELF). To keep the design
compatible with the runtime resources available on mobile
devices, we leveraged modules that are part of the Android
Open Source Project (AOSP) to achieve this conversion. Upon
completion of the conversion process, our framework extracted
the instruction opcodes by parsing the .text segment of each
OAT file. In addition, the frequency information of each opcode
within the .text segment is logged and added to a dictionary
that maintains all the valid opcodes within the dataset. The
dictionary is used for creating an encoder that is responsible for
generating the features that will be used in the final stage of the
training phase. In our design, the encoder is generated after all
the opcodes have been observed. The encoder is then deployed
to translate the parsed opcodes into features that could be used
for training the different classifiers presented in section 2.

The detection phase is similar to the training phase. It
consumes the OAT image of a given app and extracts the
appropriate instruction opcodes from the .text segment of the
aforementioned image. The framework computes the frequency
information of the opcodes and feeds it to the encoder. The
encoder ensures that the opcodes are properly encoded into the
appropriate fields of the input vector which is then forwarded
to a pre-trained classifier for evaluation.

 0

 20

 40

 60

 80

 100

RF SVM-L SVM-R SVM-P NaiveB KNN ANN LR

D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Model

Model Accuracy

Fig. 1: Summary of detection accuracy using different machine
learning models.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50

M
is

c
la

s
s
if
ic

a
ti
o
n
 C

o
u
n
t

Random Forest Estimators

Cumulative False Positives and Negatives vs. Estimators

Fig. 2: Number of misclassified apps as a function of estimators
in random forests.

3.3 Model Accuracy

Figure 1 shows the accuracy of our models in classifying apps
within our dataset. We observed that four out of eight models
are able to achieve detection accuracy above 99% with the
random forest (RF) performing the best at 99.87%, followed
by KNN at 99.83%. Further analysis showed that for most
models, normalizing the features improved the accuracy with
the exception of random forest. Random forest performed
slightly better when trained on non-normalized data and is
able to achieve 99.90%. Other models such as linear SVM
(SVM-L) and SVM RBF (SVM-R) performed relatively well with
detection accuracy of 99.7% and 99.6% respectively. However,
the remaining models, including SVM polynomial (SVM-P),
Naı̈ve Bayes (Naı̈veB), artificial neural network (ANN), and
logistic regression (LR) under performed significantly with a
10% - 15% drop in accuracy.

We further characterized the top performing models to
determine the best model for ransomware detection in mobile
systems. Figure 2 illustrates the number of misclassifications
that occurred with the random forest model as a function of es-
timators. We observed that this model performs the best when
it is configured with 9 estimators misclassifying only 4 apps. A
similar experiment with KNN and SVM-RBF showed that the
best results are obtained when using k = 2 (5 misclassifications)
and γ = 10−4 (12 misclassifications). This is summarized in
figures 3 and 4. We did not perform any tuning in the case of
SVM linear since most of the parameters were fixed. Figure
5 provides a breakdown of the misclassified data into false
positives and false negatives. A false positive corresponds to
the case where we misclassify a benign app as ransomware. On
the other hand, a false negative is more serious and corresponds
to the case where we classify ransomware as a benign app. We
observed that the random forest model performed better since it
has the least number of misclassifications and 0 false negatives.

4

 0

 20

 40

 60

 10 20 30 40 50

M
is

c
la

s
s
if
ic

a
ti
o
n
 C

o
u
n
t

k

Cumulative False Positives and Negatives vs. k

Fig. 3: Number of misclassified apps as a function of k in KNN.

 0

 25

 50

 75

 100

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

M
is

c
la

s
s
if
ic

a
ti
o
n
 C

o
u
n
t

SVM-RBF γ

Cumulative False Positives and Negatives vs. γ

Fig. 4: Number of misclassified apps as a function of γ in SVM-
RBF.

3.4 Dimensionality Reduction

To understand how instruction opcodes contribute to ran-
somware detection, we employed dimensionality reduction
techniques through PCA. We observed that 6% of the prin-
ciple components explain 50% of the variance across the full
feature set. Furthermore, we found that 99% of the variance
is explained by 60% of the principle components. Additional
testing showed that we could significantly reduce the feature
count without compromising the accuracy of the model. For
example, in the random forest model we are able to achieve the
same accuracy of 99.87% with less than 3% of the features.

4 RELATED WORK

Several studies have explored techniques to defend against ran-
somware. For example, Kharraz et al. [8] proposed a solution
that temporarily monitors file access patterns in an artificial
environment. The solution then tracks permission changes
and entropy levels of the written data to detect ransomware
activity. However, the solution suffers from the inability to
detect ransomware that stall their encryption activity until the
virtual environment is removed. Other work [9] explored the
monitoring of system-level crypto services and holding gener-
ated cryptographic keys in escrow. Such keys can be retrieved

 0

 5

 10

 15

RF SVM-L SVM-R KNN

M
is

c
la

s
s
if
ic

a
ti
o
n
 C

o
u
n
t

Model

False Negative False Positive

Fig. 5: Summary of false positive and false negative misclassifi-
cations for the best performing models.

later to recover encrypted files. However, this approach can
be circumvented by directly embedding encryption algorithms
within the application. Other techniques include the sampling
of hardware performance counters to infer malicious execution
[10]. However, a recent study by Huang et al. [11] demonstrated
the inadequacy of this approach in detecting malware when
fused with benign applications. Other work by Chen et al. [12]
examined user finger movements on mobile devices as a met-
ric for distinguishing between benign and malicious activity.
However, the approach lacks the ability to detect locker-based
ransomware designed to lock a user’s device without resort-
ing to background encryption transactions. Furthermore, other
work [13] examined static analysis techniques for detecting
malware. However, such techniques focus on analyzing either
high level bytecode or permissions files that are ineffective in
dealing with obfuscation techniques that involve repackaging
apps with malicious content directly in native form [4].

5 CONCLUSION

In this work we demonstrate the effectiveness of native op-
codes in detecting mobile ransomware. We characterize dif-
ferent machine learning models and show that our approach
can detect ransomware with 99.8% accuracy. Furthermore, this
work shows that merely 3% of the total instruction opcodes con-
tribute to the detection of ransomware. Finally, we evaluate the
robustness of our approach against six different ransomware
families available in a state-of-the-art Android malware dataset.

REFERENCES

[1] Statista, “The statistics portal,” https://www.statista.com.
[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,”
in Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, 2016, pp. 468–471.

[3] Trend Micro, “Enterprise cybersecurity solutions,”
https://www.trendmicro.com.

[4] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth
analysis of current android malware,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). Springer, 2017, pp. 252–276.

[5] Android, “Platform architecture,”
https://developer.android.com/guide/platform.

[6] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learn-
ing: From Theory to Algorithms. New York, NY, USA: Cambridge
University Press, 2014.

[7] S. Sayad, Real Time Data Mining. Self-Help Publishers, 2011.
[8] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,

“UNVEIL: A large scale, automated approach to detecting ran-
somware,” in 25th USENIX Security Symposium (USENIX Security
16). USENIX Association, 2016.

[9] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak:
Defense against cryptographic ransomware,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications
Security (Asia CCS). ACM, 2017, pp. 599–611.

[10] M. Ozsoy, C. Donovick, I. Gorelic, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient
online malware detection,” in International Symposium on High
Performance Computer Architecture (HPCA), February 2015, pp. 651–
661.

[11] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hard-
ware performance counters can detect malware: Myth or fact?”
in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security (Asia CCS). ACM, 2018, pp. 457–468.

[12] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn,
“Uncovering the face of android ransomware: Characterization
and real-time detection,” IEEE Transactions on Information Forensics
and Security, vol. 13, no. 5, pp. 1286–1300, May 2018.

[13] Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware clustering
through malicious payload mining,” in RAID, ser. Lecture Notes
in Computer Science, vol. 10453. Springer, 2017, pp. 192–214.

	Introduction
	Background
	The Android Platform
	Supervised Learning

	Evaluation
	Experimental Framework
	Feature Selection and Training
	Model Accuracy
	Dimensionality Reduction

	Related Work
	Conclusion
	References

