
1

Towards Mobile Malware Detection Through
Convolutional Neural Networks

Nada Lachtar, Member, IEEE, Duha Ibdah, Member, IEEE, Anys Bacha Member, IEEE,

Abstract—Traditional research on mobile malware detection
has focused on approaches that rely on analyzing bytecode for
uncovering malicious apps. Unfortunately, cybercriminals can
bypass such methods by embedding malware directly in native
machine code, making traditional methods inadequate. Another
challenge that detection solutions face is scalability. The sheer
number of malware released every year makes it difficult for
solutions to efficiently scale their coverage.

This paper presents an energy efficient solution that uses
convolutional neural networks (CNN) to defend against malware.
We show that systematically converting native instructions from
Android apps into images using Hilbert space-filling curves and
entropy visualization techniques enable CNNs to reliably detect
malicious apps with near ideal accuracy. We characterize popular
CNN architectures that have been known to perform well on
different computer vision tasks and evaluate their effectiveness
against malware using an Android malware dataset.

Index Terms—Malware, Mobile Security, Machine Learning

I. INTRODUCTION

THE advent of deep learning combined with convolutional
neural networks (CNN) has demonstrated significant

promise in tackling a multitude of computer vision problems
including brain tumor detection, developmental disorder clas-
sification, and facial expression recognition.

Prior work has examined malware detection for mobile
systems [1], [2]. However, such work either focused on de-
tecting malware using high-level byte code which make them
vulnerable to techniques that pack malicious code directly in
native form [1], or rely on machine learning algorithms that
don’t generalize well, can’t perform feature extraction, and
are susceptible to overfitting [2]. In this paper, we explore the
use of CNNs for detecting mobile malware. We evaluate this
approach by extensively testing different CNN architectures.
We show that our proposed solution is to achieve a detection
rate of 99.7% when converting the native instructions of
Android apps into images through Hilbert space-filling curve
techniques. We evaluate our solution against six ransomware
families available in an Android malware dataset [3].

Overall, this paper makes the following contributions:
• Presents a novel approach for using native instructions

from mobile apps with convolutional neural networks.
• Characterizes popular CNN architectures and demon-

strates their relevance to detecting malicious Android
apps while showing that a detection accuracy of 99.7%
can be achieved.

The authors are with the University of Michigan, Dearborn, MI, 48128.
This work was supported in part by the National Science Foundation under

grant CNS-1947580.

• Evaluates the effectiveness of Hilbert space-filling curves
and entropy in converting native ARM instructions from
Android apps into images and their relevance to mobile
malware detection when used with CNNs.

The rest of this paper is organized as follows: Section II pro-
vides background information. Section III presents the design
of the proposed system. Section V presents the methodology
and results of our evaluation; and Section VI concludes.

II. BACKGROUND

A. Native Execution in Android Platforms

Android applications are consumed in the form of a package
that is known as the Android Package Manager (APK). This
bundle consists of multiple files including a Dalvik executable
(dex) file that contains Java bytecode. Once an APK is
installed, the app can request from the OS the various services
it needs. However, before the app can execute, it must undergo
a series of compilation steps that are administered by the
Android Runtime system (ART). ART relies on ahead-of-
time compilation techniques for executing Android apps. ART
archives any given APK by compiling the dex file into an
OAT file (ahead-of-time file) through one of its modules. This
approach is designed to significantly speed up application per-
formance compared to the just-in-time compilation approach.
Our solution makes use of such OAT files as the basis for
generating images that can be consumed by our trained CNNs.

B. Space-filling Curves

A space-filling curve is a function that has the ability to
map sets of data into a multi-dimensional hypercube. It has
the property of passing through all the points in a given space
while visiting each point only once. Therefore, it can impose
a linear ordering of points in a multi-dimensional space and
preserve spatial information. This property is important to this
study since it preserves the ordering of instructions present in
apps after they are transformed into images.

This study makes use of the Hilbert space-filling curve
for mapping instructions into pixel locations within a 2D
image based on [4]. We generate two sets of data images
that use different coloring schemes. The first scheme makes
use of the Hilbert curve for generating a fine-grained RGB
palette. This ensures that similar instructions will be assigned
similar pixel values based on the RGB. An example of this
is shown in Figure 1a. The second scheme is less granular
and makes use of entropy in conjunction with the red and
blue components of the RGB space. It relies on the Shannon

https://orcid.org/0000-0001-6711-1280

(a) Hilbert Color (b) Entropy Color

Fig. 1: Example of native code for a ransomware app trans-
formed into images using Hilbert and entropy-based colors.

1. Installation 2. Conversion 3. Verification

App
Store

4. Encoding

APK

Android
ART

dex

OAT

dex2oat

Match

OAT
Lookup

Launch
App

Encoding

Benign

Image

Launch
App

Alert

Space
Filling
Curve

Image

OAT
Database

Mal.
Classifier

 Update
 DB

OAT

5. Classification

Fig. 2: Detection Solution Overview.

entropy over a window of n pixels to define the intensity of
the aforementioned components. Although, not as granular,
visualizing data through entropy has the benefit of highlighting
encrypted content that is often an indicator of malicious
content. An example of this is shown in Figure 1b.

III. DESIGN

A primary objective of our design is to defend against
obfuscation techniques that involve injecting native code into
repackaged mobile apps. To this end, our design relies on
native instructions as part of its detection process. An overview
of our design is shown in Figure 2. The process begins with
a user installing a desired application using an APK bundle
from the app store (step 1). This prompts the ART to
extract the classes.dex which represents the executable in
Dalvik bytecode form. The ART then generates an OAT image
through a dex2oat module to produce an ELF formatted
file that contains the native instructions that will be executed
on the device (step 2). Once an OAT image is available,
our design proceeds to the verification phase (step 3) in
order to determine if the app, in its native form, is safe to
launch. To achieve this, we use a small OAT database that
consists of all the OAT names installed on the system and
their corresponding hashes. We maintain the most recent hash
for each OAT image within the database using the SHA512
algorithm. An important step in this phase consists of the OAT
lookup. This entails computing the hash of the converted OAT
file the user is attempting to launch and matching it to the
database. If a valid entry for this OAT image is found within
the database, we compare its computed hash against the most
recently saved hash for that same OAT. If the hashes match,
we launch the app. Otherwise, we proceed to the encoding

phase. The encoding phase (step 4) transforms the OAT file
into a pixelated image that can be consumed by a CNN. We
use the Hilbert space-filling curve visualization technique to
achieve this transformation. This image is then input into a
CNN-based classifier (step 5). In the event that the image is
classified as benign, the design updates the OAT database to
include the most recent hash and launches the app. Otherwise,
an alert is issued to the user. In most cases, a user attempting
to launch an app will only result in step 3 being activated.
This step represents the common case. Steps 4 and 5 are
only used if the user installs or updates an app.

IV. THREAT MODEL

We assume malware is installed on a device through mecha-
nisms supported by the OS which entails downloading an APK
from an app provider. We assume no privilege attacks occur
on the device and that the OS hasn’t been compromised. We
do not consider traditional database attacks in our model since
our OAT database is internal to the system. Finally, we assume
malware can masquerade as a benign app and perform delayed
updates as a way of fetching malicious content. To thwart such
attacks, our design verifies OAT files on every launch.

V. EVALUATION

A. Experimental Setup

We re-purposed three CNN architectures for this study:
LeNet, Alexnet, and InceptionV3. To generate OAT files that
correspond to the APKs within our dataset, we created a
framework similar to [2] that is based on the Android 6.0.1
release. The framework was used to convert the app executa-
bles from Dalvik bytecode (classes.dex) to Android OAT
files that use a standard Executable and Linkable Format. We
used TensorFlow 1.12 for testing the CNN architectures and
transformed OAT files into 256 × 1024 images through the
Hilbert space-filling curve. We used a Raspberry PI 3 B+
(RPI) to characterize the suitability of our design for mobile
systems. We used the Klein Tools ET920 USB digital meter
for measuring the average power of the RPI platform while we
ran the different phases of our design. In addition to power,
we collected the runtime information for each phase in order
to compute the overall energy consumption.

We conducted experiments using 2063 malware samples
from six ransomware families in [3] and 13022 samples
from AndroZoo [5] as a baseline for benign Android apps.
The aforementioned samples were combined to form two
datasets that we trained and tested with, which consisted of the
following sizes: 3K and 15K image datasets. The breakdown
for the aforementioned datasets consisted of 1500 ransomware
and 1500 benign, and 2063 ransomware and 13022 benign
images. We dedicated 80% of each dataset for training, 10%
for validation, and 10% for testing. We generated two types
of images for each dataset with each image type using a
different coloring scheme. The first type employed an order 8
Hilbert curve for mapping instruction opcodes into RGB pixel
values. The second type used an entropy-based approach for
setting the red and blue components in the RGB space. Each
pixel value was computed based on entropy level over 256

2

opcodes resulting in colors that scaled between black and pink
depending on the amount of entropy.

B. Model Analysis

Our evaluation focused on two dataset sizes for each color-
ing scheme. The first dataset size was small and balanced with
an equal amount of malicious and benign images (3K images).
The second dataset was larger (15K images), but imbalanced
due to more benign samples being present in the dataset.
Tables I and II summarize the quality metrics for the different
architectures using the aforementioned dataset sizes for each
of the coloring schemes. Overall, we observed that LeNet had
the best performance when using the Hilbert-color dataset,
followed by Alexnet, then InceptionV3. LeNet consistently
had the best accuracy and F-score for both dataset sizes.
In terms of malware classification, Alexnet and InceptionV3
showed better true positive rates (TPR) of 99.3% when using
the smaller dataset (3K). However, their TPRs dropped to
97.6% when using the larger 15K dataset while LeNet’s TPR
improved to 98.1%. LeNet also exhibited 0% false positive
rates for both data sizes. A similar trend was observed with
the entropy-color dataset.

To better understand the performance of these models, we
examine the amount of false negatives and false positives each
model generates. We also compare the performance of the
CNN models as a function of coloring scheme: Hilbert-color
and entropy-color. Figure 3 shows the count of misclassified
apps in terms of false positives and false negatives. We prepend
-H and -E to the model names to denote runs that used images
generated with the Hilbert and entropy coloring schemes,
respectively. We also include the geometric mean of the false
negatives and positives across CNNs in order to compare the
overall impact of the different coloring schemes. In this study,
a false positive is when we misclassify a benign application
as malware which is perceived as a nuisance to the user, but
doesn’t cause any harm to the device. A false negative is when
we incorrectly classify a malicious application as benign. A
closer look at Figure 3a suggests that Alexnet-H is the most
conservative when used with a small dataset, yielding one
false negative which is a little better than both LeNet-H and
LeNet-E. We also note, that in general entropy-based images
result in lower false negatives as shown by the geometric
means Geo-H and Geo-E. However, the Hilbert-based images
yield lower false positives. This trend persists even with the
larger dataset as shown in Figure 3b. We observed that both
LeNet-H and LeNet-E performed the best yielding the lowest
misclassification counts and least number of false negatives as
the datasize is scaled. Similarly, we can see from the geometric
means that on average, the Hilbert-based images generate the
least number of false positives across CNNs ranging from 0 – 3
false positives with a geometric mean under 0.5. The entropy-
based images yield the least number of false negatives with
a range of 0 – 2 across CNNs with a geometric mean of
less than 0.3. Since false negatives represent the number of
undetected malware samples in our dataset, we conclude that
entropy-based images are better at capturing malicious features
compared to Hilbert-based images. As such, we consider using

 0

 1

 2

 3

LeN
et-H

LeN
et-E

A
lexnet-H

A
lexnet-E

Inception-H

Inception-E

G
eo-H

G
eo-E

10

M
is

c
la

s
s
if
ic

a
ti
o
n
 C

o
u
n
t

Model

False Negative False Positive

(a) Small dataset (3K)

 0

 1

 2

 3

 4

 5

LeN
et-H

LeN
et-E

A
lexnet-H

A
lexnet-E

Inception-H

Inception-E

G
eo-H

G
eo-E

M
is

c
la

s
s
if
ic

a
ti
o
n
 C

o
u
n
t

Model

False Negative False Positive

(b) Large dataset (15K)
Fig. 3: Summary of false positive and negative misclassifica-
tions for small (3K images) and large (15K images) datasets.

 0

 1

 2

 3

 4

 5

 6

 7

Alexnet Inception

R
e

la
ti
v
e

 R
u

n
ti
m

e

Model

Other CNN LeNet

(a) Runtime

 0

 1

 2

 3

 4

 5

 6

 7

Alexnet Inception

R
e

la
ti
v
e

 E
n

e
rg

y

Model

Other CNN LeNet

(b) Energy

Fig. 4: Runtime and energy of different models relative LeNet.

the LeNet model with entropy-based images (LeNet-E) to be
the most secure given its low false negative count.

C. Runtime and Energy Overhead

Figure 4a shows the runtime of different CNN models
relative to LeNet. In general, Alexnet (8 layers) had the second
least impact on performance. We observed that the runtime
relative to the LeNet model ranges between 3x to 7x. Figure
4b shows the energy consumption of different CNN models.
We observed a similar trend to the runtime performance with
Alexnet being the second most efficient model. We observed
that the energy relative to the LeNet model ranges between 3x
to 7x. This is summarized in Figure 4b. Our results suggest
that LeNet is the most suitable model for mobile systems.

Overall, our system has three main sources of runtime and
energy overhead. These sources are the cost of performing
the verification, encoding, and classification within our design.
Figures 5a and 5b show a breakdown of the aforementioned
overheads. In our design, the verification phase is executed
every time an app is launched and represents the common
case. We measured runtime and energy costs of 374 ms and
1.1 J. It is important to note that this overhead is confined to
the startup cost of launching a given app. Our design, doesn’t

3

Model
Accuracy True Positive Rate (TPR) False Positive Rate (FPR) Precision F-score

Small Large Small Large Small Large Small Large Small Large
(3K) (15K) (3K) (15K) (3K) (15K) (3K) (15K) (3K) (15K)

LeNet 0.993 0.997 0.987 0.981 0 0 1 1 0.993 0.990
Alexnet 0.993 0.997 0.993 0.976 0.007 0 0.993 1 0.993 0.988
InceptionV3 0.987 0.997 0.993 0.976 0.020 0 0.980 1 0.987 0.988

TABLE I: Summary of quality metrics under different CNN models for the small (3K) and large (15K) Hilbert-color dataset.

Model
Accuracy True Positive Rate (TPR) False Positive Rate (FPR) Precision F-score

Small Large Small Large Small Large Small Large Small Large
(3K) (15K) (3K) (15K) (3K) (15K) (3K) (15K) (3K) (15K)

LeNet 0.993 0.997 0.993 0.985 0.007 0.001 0.993 0.995 0.993 0.990
Alexnet 0.980 0.995 1 0.981 0.067 0.001 0.938 0.995 0.968 0.988
InceptionV3 0.990 0.995 0.987 0.976 0.007 0.002 0.993 0.985 0.990 0.980

TABLE II: Summary of quality metrics under different CNN models for the small (3K) and large (15K) entropy-color datasets.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Verification Encoding Classification

2

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Detection Phase

Runtime Overhead

(a) Runtime

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Verification Encoding Classification

6

E
n

e
rg

y
 (

J
o

u
ls

)

Detection Phase

Energy Overhead

(b) Energy

Fig. 5: Breakdown by phase in terms of runtime (a) and energy
(b) overheads for the LeNet model with entropy-based images.

incur any overhead after the app has been launched. Also,
having the verification phase allows us to keep the overhead
to a minimum by obviating the execution of the remaining
phases unless an app is installed or updated. The second source
of overhead relates to encoding which entails transforming
the app’s OAT file into an image. This component marks
the highest overhead in our design. In the case of Hilbert-
based images, we measured runtime and energy costs of 2.5 s
and 7.4 J. On the other hand, entropy-based images required
1.9 s and 5.6 J for runtime and energy, respectively. This
correlates to a 25% improvement in both runtime and energy
relative to the Hilbert-based approach. Although this cost is
still higher than the verification phase (5x – 7x), we anticipate
this phase to only be used for newly installed apps or any apps
that undergo updates. The final source of overhead relates to
the classification phase which involves classifying the image
obtained from the encoding phase through a CNN. We used
the LeNet model to measure the overhead since it performed
the best. We measured runtime and energy costs of 342 ms and
1 J. Similar to the encoding phase, we anticipate this phase
to only be used for newly installed apps or any apps that
undergo updates. Therefore, in addition to LeNet-E being the
most secure, we find this model to also be the most efficient
in terms of runtime and energy.

D. Comparison to Other Machine Learning Designs

Algorithms such as Support Vector Machines (SVM) and
Logistic Regression (LR) are less complex than CNNs, and
therefore, more energy efficient. While using a design that
employed opcodes within OAT files as features for SVM and
LR [2], we observed classification runtimes of 23 ms and 19
ms, respectively. Similarly, we obtained 69 mJ (SVM) and

59 mJ (LR) for energy. However, despite the efficiency of
these models, the encoding phase alone required 6 s and 18 J
for runtime and energy which translates to 3x more overhead
relative to our end-to-end CNN-based solution. Unlike CNNs,
encoding OATs for these algorithms are not amenable to
harnessing the SIMD engine, and therefore, require more
time to complete. Most importantly, such algorithms lack the
ability to perform feature extraction, a critical task for effective
malware detection. To illustrate this, we trained the SVM and
LR models against 15K OAT datasets compiled for different
platforms: an ARM OAT dataset (smartphone platform) and
an x86 OAT dataset (chromebook platform). We observed
a noticeable degradation in the detection rate when going
from ARM to x86. With the ARM dataset, both models had
detection rates of 98.5%. However, these rates dropped to
88.0% (SVM) and 96.1% (LR) when trained using the x86
dataset, suggesting that new features that are representative
of x86 platforms had to be extracted. On the other hand, the
LeNet-E model had detection rates of 98.5% and 99.0% for
ARM and x86, respectively. This result shows the versatility
of CNNs in autonomously extracting complex features and
seamlessly adapting to different platforms.

VI. CONCLUSION

We propose a solution that harnesses visualization tech-
niques for converting application instructions into images
and explore their relevance to malware detection when com-
bined with CNNs. We demonstrate that high accuracy can be
achieved when combining a simple LeNet model with entropy-
based images generated through space-filling curves.

REFERENCES

[1] T. Hsien-De Huang and H.-Y. Kao, “R2-d2: Color-inspired convolutional
neural network (cnn)-based android malware detections,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
2633–2642.

[2] N. Lachtar, D. Ibdah, and A. Bacha, “The case for native instructions
in the detection of mobile ransomware,” IEEE Letters of the Computer
Society, vol. 2, no. 2, pp. 16–19, June 2019.

[3] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current android malware,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA).
Springer, 2017, pp. 252–276.

[4] A. Cortesi, “A library for drawing space-filling curves like the hilbert
curve.” 2015, https://github.com/cortesi/scurve.

[5] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, 2016, pp. 468–471.

4

	Introduction
	Background
	Native Execution in Android Platforms
	Space-filling Curves

	Design
	Threat Model
	Evaluation
	Experimental Setup
	Model Analysis
	Runtime and Energy Overhead
	Comparison to Other Machine Learning Designs

	Conclusion
	References

