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Abstract—The popularity of cryptocurrencies has garnered
interest from cybercriminals, spurring an onslaught of crypto-
jacking campaigns that aim to hijack computational resources
for the purpose of mining cryptocurrencies. In this paper, we
present a cross-stack cryptojacking defense system that spans
the hardware and OS layers. Unlike prior work that is confined
to detecting cryptojacking behavior within web browsers, our so-
lution is application agnostic. We show that tracking instructions
that are frequently used in cryptographic hash functions serve as
reliable signatures for fingerprinting cryptojacking activity. We
demonstrate that our solution is resilient to multi-threaded and
throttling evasion techniques that are commonly employed by
cryptojacking malware. We characterize the robustness of our
solution by extensively testing a diverse set of workloads that
include real consumer applications. Finally, an evaluation of our
proof-of-concept implementation shows minimal performance
impact while running a mix of benchmark applications.

I. INTRODUCTION

From startup investments to dining out across the street,
cryptocurrencies are revolutionizing the way we conduct every
day business. It was estimated in 2019 that over 11 million
cryptocurrency transactions occurred on a daily basis [34],
prompting various governments to launch their own state-
backed cryptocurrencies as a way of boosting their economies
[15]. Unfortunately, the popularity of cryptocurrencies has
garnered interest from cybercriminals, spurring an onslaught
of creative attacks on computer systems in order to harness
this technology for profit.

Cybercriminals are constantly seeking ways to make their
attacks more profitable. For instance, several governments
have fallen victim to a slew of ransomware attacks within
recent years. This resulted in the aforementioned entities being
extorted for ransom in return for restoring their maliciously en-
crypted data. Although ransomware has served cybercriminals
well in the past, attackers are resorting to cryptojacking, a less
invasive and more lucrative form of malware.

Cryptojacking involves appropriating computational re-
sources from a victim for the purpose of mining cryptocur-
rencies. Although cryptojacking is considered a low risk
practice within the cybercriminal world, attackers can earn
more than $1.7 million for 10 million victims per month
[17]. As a result, cryptojacking has burgeoned aggressively
across a multitude of platforms that span mobile devices, PCs,
network infrastructure, and servers, with several campaigns
having notable success [6], [10], [11], [26]. For instance, the
Smominru cryptojacking campaign [26] was estimated to have
hijacked half of a million PCs for mining cryptocurrencies.

Another cybersecurity firm discovered that an average of
3,000 Microsoft SQL servers were being infected every day
for running mining scripts [10]. Similarly, supercomputers
across Europe that are often tasked with solving important
global and computationally complex problems were hijacked
for mining cryptocurrencies [11]. Such campaigns can have
adverse effects on businesses and consumers. This includes the
unavailability of compute resources, as well as, high energy
costs due to systems being enslaved to cryptojacking malware.

In addition to higher energy costs and hijacked computa-
tional resources that can lead to denial of service, cryptojack-
ing can have adverse effects on the reliability of systems. The
deep submicron transistors that serve as the fundamental build-
ing block in today’s processors are vulnerable to circuit aging
effects that occur in sustained high power execution environ-
ments. Such effects are induced by Negative Bias Temperature
Instability (NBTI) and Hot-Carrier Injection (HCI) phenomena
[19], [33], [37] which can permanently damage a given device.
To this end, researchers have reported laptops being damaged
after falling victim to Monero-based cryptocurrency miners,
as well as, casings of smartphones being melted [9], [29].

Various approaches have been found in the wild for luring
victims into cryptojacking practices. This includes compro-
mising commonly visited websites and infecting them with
malicious JavaScript code [2], forking popular Github projects
and injecting into them malicious code [4] that could propa-
gate to cloud-based containers and in turn exhaust available
compute credits, as well as disguising cryptojacking malware
as legitimate apps onto Google Play and Microsoft Stores
[18], [39]. All of the aforementioned techniques share the
common goal of appropriating execution cycles from the
victim’s machine with the intent of mining cryptocurrencies.

This paper proposes a novel solution for dynamically detect-
ing cryptojacking attacks. Unlike prior work that has focused
on detecting cryptojacking activity within web browsers [5],
[17], [20], [21], [38], our mechanism is more general, and
therefore, application agnostic. More importantly, our solu-
tion mitigates commonly used evasion techniques, such as
code obfuscation, multi-threaded, and throttling attacks. We
find that selecting key instructions that are frequently used
in cryptographic hash functions serve as reliable signatures
for fingerprinting cryptojacking behavior. We leverage these
signatures to implement a low-cost, yet effective proof-of-
concept that can accurately detect cryptojacking activity ir-
respective of the application type. We accomplish this by



harnessing innovations at the microarchitecture layer that track
a programmable set of instructions as they progress through
the processor. We develop the necessary modules within the
operating system to periodically collect the frequency of
tagged instructions from the hardware layer for all scheduled
processes while maintaining low overheads. We characterize
the robustness of our approach by extensively testing a wide
range of applications that span multiple categories, includ-
ing: social media, productivity, communication, entertainment,
high performance computing, cryptography, as well as non-
mining cryptocurrency and decentralized applications.

Overall, this paper makes the following contributions:
• Proposes an application agnostic design that harnesses

innovations at the microarchitecture and OS layers for
defending against emerging cryptojacking attacks.

• Demonstrates that monitoring instructions that are com-
monly present in cryptographic functions are suitable for
cryptojacking detection.

• Characterizes a variety of instruction types in crypto-
graphic functions, benchmarks, and commonly deployed
user applications, while evaluating their relevance for
cryptojacking detection with high accuracy.

• Presents a design that is robust against code obfuscation,
multi-threaded, and throttling attacks while maintaining
a low false positive rate.

The rest of this paper is organized as follows: Section II
provides background and motivation information. Section III
discusses the threat model. Section IV describes the design
of the proposed system. Section V presents the methodology
and experimental framework used in this work. Section VI
discusses the results of our evaluation. Section VII details
related work; and Section VIII concludes.

II. BACKGROUND AND MOTIVATION

A. Out of Order Execution

Modern processors employ a variety of latency hiding
techniques in order to improve execution performance. Such
techniques include temporarily executing program instructions
in an out of order fashion as a way of utilizing hardware
resources more efficiently. With this approach, instructions
are fetched into the processor in their original program or-
der through a front-end module. This module is responsible
for fetching a continuous stream of instructions from the
instruction cache into the processor’s pipeline. To supply a
high-bandwidth of instructions into the pipeline, the front-end
makes use of a branch prediction unit (BPU) that speculates
the next set of instructions to be executed before branches are
resolved, and fetches them for execution. Fetched instructions
are decoded to determine the functional units they require
and then forwarded to the out of order engine for further
processing. On complex instruction set computer (CISC) ar-
chitectures, such as x86, the decoder also translates incoming
instructions into simpler micro-instructions.

When instructions arrive to the out-of-order execution en-
gine, entries within the re-order buffer (ROB) and reservation

station structures are allocated. The ROB is a circular queue
that tracks outstanding instructions in the out-of-order execu-
tion engine along with the completion status information for
each instruction. It is the entity that maintains the original
sequence of instructions and ensures that completed instruc-
tions are retired in program order. This necessary ordering
is maintained through the use of head and tail pointers that
are updated as instructions are retired. Instructions continue
to advance within the re-order buffer towards the head until
they are committed and their architectural state is made visible.

The actual out-of-order execution, on the other hand, is
provided through a scheduler that references reservation sta-
tions. These are primarily buffers for the actual instructions
before they are dispatched to the relevant execution units. The
scheduler is used to determine when the buffered instructions
are eligible for dispatch to the execution units. In addition,
the scheduler monitors the results of previous instructions that
are generated by the execution units to determine when the
dependencies of buffered instructions are resolved and can
proceed to the execution units. Whenever the dependencies
are met, the scheduler dispatches the appropriate instruction
regardless of its original program order assuming the ap-
propriate functional unit is available. Our solution leverages
modifications to the front-end and out-of-order execution units
for tracking instructions in support of cryptojacking detection.

B. Cryptocurrencies

Unlike traditional currencies that are governed through a
central authority, cryptocurrencies are completely virtual and
decentralized. They rely on blockchain as a core technology.
Blockchain is a distributed ledger that is established through
a collection of interconnected blocks [3]. Blocks within the
blockchain are identified by their hashes, where each block can
contain several transactions. In addition, every block includes
within its header, the hash of its parent block in order to
form the blockchain. Outstanding transactions are formed into
blocks that are in turn processed by a network of peer-to-peer
nodes, referred to as miners. Although miners fulfill the role
of validating newly created blocks using a decentralized con-
sensus mechanism, they also compete with one another over
receiving a reward in return for their effort. The first miner
that solves a complex mathematical puzzle is rewarded once
the block is verified and deposited onto the blockchain. The
solution to the puzzle is known as proof-of-work (PoW) and
involves a considerable amount of hash operations. Although
other approaches exist, cryptocurrencies such as Monero [25]
and Zcash [40] that are designed to maintain their transactions
anonymous, rely on the PoW approach. Unfortunately, the
anonymity of such cryptocurrencies has garnered attention by
cybercriminals, giving rise to a slew of cryptojacking attacks.

C. Secure Hash Algorithms

Hashing is a core component of cryptocurrency algorithms.
These algorithms rely on a significant amount of hash opera-
tions as part of recording transactions on the public ledger
while making them immutable. For instance, transactions
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within a given block undergo multiple iterations of hash
operations as they are progressively merged using a Merkle
tree. In addition to merging transactions, several rounds of
hashing are applied as part of solving the hash difficulty
imposed by the algorithm.

In this study, we focus on the SHA-3 and SHA-2 secure
hash algorithms which serve as core functions for most
cryptocurrencies, including ones that promote anonymity, such
as Monero [25] and Zcash [40]. Such functions rely on
elementary operations that include addition (+), logical or (∨),
logical and (∧), exclusive or (⊕), n-bit right shift (Sn), and
n-bit right rotation (Rn).
Secure Hash Algorithm 3 (SHA-3). SHA-3 is a one-way
cryptographic hash algorithm that is based on a sponge con-
struction. Each block bi within a message M undergoes a
five-stage process that is denoted as θ, ρ, π, χ, and ι.

Step θ is designed to ensure diffusion. This is accomplished
by manipulating a sequence of arrays, A, B, C, and D, using
modulo 5 arithmetic in addition to other logical operations.
The arrays are indexed using indices x and y. Equation (1a)
- (1c) summarize the operations involved in step θ.

Cx = Ax,0 ⊕Ax,1 ⊕Ax,1 ⊕Ax,2 ⊕Ax,3 ⊕Ax,4 (1a)

Dx = Cx−1 ⊕R1(Cx+1) (1b)
Ax,y = Ax,y ⊕Dx (1c)

Steps ρ and π are used to derive an auxiliary array B from
the state array A through rotation and permutation. Both of
these steps are summarized in equation (2).

By,2x+3y = Rrx,y (Ax,y) (2)

Step χ serves the purpose of manipulating the auxiliary
array B that was previously computed in steps ρ and π. This
step is defined in equation (3).

Ax,y = Bx,y ⊕ (B̄x+1,y ∧Bx+2,y) (3)

The final step is ι. It combines each state array element
from A with a predefined constant, RCi in order to undo any
symmetry that was produced by the previous steps. This step
is illustrated in equation (4).

A0,0 = A0,0 ⊕RCi (4)

Overall, the aforementioned equations show that a large
portion of the SHA-3 algorithm entails performing exclusive
or and rotation operations.
Secure Hash Algorithm 2 (SHA-2). Unlike SHA-3, SHA-2 is
a cryptographic hash function that relies on a Merkle-Damgard
construction. Its compression function f is composed of six
logical components that are executed repeatedly for each block
bi within a message M . The logical functions and the operands
they use are outlined in equations (5a) - (5f).

Ch(x, y, z) = (x ∧ y)⊕ (x̄ ∧ y) (5a)
Maj0(x) = (x ∧ y)⊕ (x ∧ y)⊕ (y ∧ z) (5b)

Σ0(x) = R2(x)⊕R13(x)⊕R22(x) (5c)

Σ1(x) = R6(x)⊕R11(x)⊕R25(x) (5d)

σ0(x) = R7(x)⊕R18(x)⊕ S3(x) (5e)

σ1(x) = R17(x)⊕R19(x)⊕ S10(x) (5f)

Despite the differences between the SHA-2 and SHA-3
algorithms, SHA-2 also requires performing a large amount
of exclusive or and rotation operations. Furthermore, it is im-
portant to note that in addition to the use of the aforementioned
secure hash algorithms, anonymous cryptocurrencies, such
as Monero and Zcash, incorporate the Advanced Encryption
Standard (AES) [1] and the BLAKE2 hash algorithm [8], [32].
These algorithms also rely on n-bit rotation (Rn), n-bit shift
(Sn), exclusive or (⊕) operations, and several other arithmetic
operations enclosed in a memory hard loop. As such, our
study considers the aforementioned operations in the context
of other cryptographic algorithms that utilize the same set of
operations.

D. Hash Operations in Mining Services

To understand the amount of hashing anonymous cryptocur-
rencies require and their respective operations, we conducted a
set of experiments using one of the most popular anonymous
cryptocurrencies, Monero. We began by statically analyzing
the core function that performs the SHA-3 hashing (Keccak)
within Monero’s CryptoNight algorithm [12]. For instance, the
aforementioned function is the entity that is responsible for
carrying out the previously described five stages of the sponge
construction: θ, ρ, π, χ, and ι. To this end, we disassembled a
Monero binary using the GNU objdump utility and examined
its compiled instructions. More specifically, we analyzed the
x86 assembly instructions present in the keccakf() func-
tion. Figure 1 summarizes the distribution of the compiled
instructions contained in this core function of the CryptoNight
algorithm. We observe that more than half of the opcodes
(56%) are in the form of MOV instructions. We also find in the
code typical stack-based instructions, such as PUSH and POP
that are used for accessing variables, as well as, setting up
and restoring stack-frames as a result of entering and exiting
the function. Most importantly, we find other instructions that
are central to hash operations. These include XOR, which
represents 24% of the overall instructions in the hash function.
In addition, we find several AND instructions which are also
employed in hashing. This represents about 8% of the overall
instructions within the function. Finally, we find ROR and
ROL rotation instructions which account for 2% of the total
instructions. While Figure 1 doesn’t take into consideration the
frequency of the instructions, as a result of looping through
multiple rounds, we can see that the critical instructions that
are key to the sponge construction are present within the SHA-
3 function of the CryptoNight algorithm.
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Fig. 1: Distribution of compiled instructions in the core Keccak
module within Monero’s CryptoNight algorithm.
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Fig. 2: Hash rate of a live Monero cryptocurrency service
while mining on a Core i7 3370 based system.

In order to estimate the frequency of the previously de-
scribed instructions within cryptocurrency services, we instru-
mented the code available through the Monero project [25].
We then deployed this instrumented code on a live mining
service and recorded the hash rate our node observed while
mining. Figure 2 illustrates the average hash rate observed by
our node as a function of time. We observe that on an x86
system equipped with a 4-core Intel Core i7 3370 processor
and 8GB of memory, an average of 647 Hashes/s was recorded
while mining on the Monero service. We see that this rate is
sustained over a period that exceeds two hours. The lowest
hash rate that we recorded throughout this period was 564
Hashes/s. This experiment underscores the continuous and
aggressive nature of hash operations that systems engaged in
cryptocurrency mining will exhibit in a sustained fashion over
extended periods.

III. THREAT MODEL

Our solution is designed to provide application agnostic pro-
tection against cryptojacking. This includes protecting against
attacks that are sourced through web browsers and standard
applications. As such, we assume attackers can initiate cryp-
tojacking activity through any of the following methods:

• Web Browsers. Attackers leverage a drive-by approach
where victims visit a website infected with a malicious
script. The mining script is launched on the victim’s
machine after the compromised page is visited [24].

• Non-browser Applications. Similar to browser exten-
sions, attackers publish seemingly benign applications
on app stores, often in the categories of gaming and
education in order to lure their victims [18], [27], [39].
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Fig. 3: Main components of the cryptojacking defense system.
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Other methods include forking popular Github projects
and inject into them malicious code that the victims
would in turn build from source [28].

In addition to the above, our design assumes that the attack
is confined to user space and that the system is free from
any privilege escalations. We also assume that mining could
be performed across multiple threads in a throttled fashion in
order to evade detection. We assume obfuscation attacks are
confined to instruction substitutions that result in reasonably
high hash rates. For example, an attacker could use shift
instructions in lieu of rotate instructions to avoid detection
while remaining profitable. However, substituting an exclusive
or instruction with a sequence of bitwise operations would be
considered uneconomical from the attacker’s point of view
since such obfuscation techniques would render cryptojacking
ineffective at mining.

IV. THE CRYPTOJACKING DEFENSE SYSTEM

Our defense system employs a cross-stack design that
spans the hardware and OS layers for detecting cryptojacking
activity. An overview of this system is depicted in Figure 3.

A. Hardware Layer

A key observation to our approach involves monitoring
instructions that are frequently executed in hash functions
as a way of detecting malicious behavior. Consequently, we
enhance the microarchitecture of the front-end and out-of-
order execution components belonging to the CPU cores to
enable autonomous tracking of pre-programmed instructions.
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Fig. 4: Example showing the use of the RSX bit for tracking
crypto-related instructions within the re-order buffer (ROB).

Front-end Module. This entity is responsible for tracking the
relevant instructions associated with cryptojacking malware.
As such, fetched instructions that are deemed potentially ma-
licious are tagged through logic that we embed in the pipeline’s
decoder. In our design, we tag, rotate, shift, and exclusive or
operations (RSX) since these by in large encompass the main
set of instructions hash functions rely on, and are in turn core
to cryptojacking malware. Although this work focuses on RSX
instructions, our solution is designed to be field upgradable.
Consequently, our design incorporates microcode to allow re-
programming of the instructions to be tagged. Such updates
can be transparently initiated from the OS in the form of
firmware updates, which makes our solution scalable to future
malware attacks.
Out-of-order Execution Engine. This component is responsi-
ble for tracking the instructions tagged during the decode stage
as they undergo out of order execution. To this end, an entry
within the ROB is allocated whenever a tagged instruction
is received from the front-end component. Such entries are
used to maintain the original sequence of each instruction
produced by the compiler. Each entry in the re-order buffer
is augmented with a special bit that is used to mark incoming
RSX instructions that were tagged during the decode stage.
Figure 4 shows an example of how the RSX bit (denoted as
“R”) is used for tracking crypto-related instructions within the
ROB. We can see that the relevant instructions, such as SRL,
XOR, and ROR have their RSX bits set. Completed instructions
that are denoted with a status bit “C” in Figure 4 continue to
advance towards the commit point. Once an entry reaches the
commit point, the retirement logic examines the status of the
“R” and “C” bits. If both bits are set, the design updates the
performance counter to indicate that a new RSX instruction
has retired, as shown in step 2 in Figure 3.

B. Operating System Layer

An important component of our solution lies within the OS
layer. Our design leverages the OS scheduler to collect the
necessary information from the hardware. We choose using
the scheduler for this purpose primarily to enable detecting
cryptojacking activity at the process level. As a result, we
design the scheduler to perform various housekeeping tasks
every time a running process is context switched. Such tasks

encompass counter sampling, data structures updates, and RSX
threshold checking. This step is illustrated as step 3 in Figure
3.

In order to keep the hardware design low-cost, we employ
a single counter for tracking the aggregate number of crypto-
related instructions as they are executed through the pro-
cessor’s pipeline. The scheduler uses the rsx_count field,
shown in Listing 1, for tracking the cumulative number of
RSX instructions the running process has executed. This field
is referenced by the scheduler through an rsx_ptr field
that is located in the overall task_struct data structure
of the running process, as illustrated in Figure 3. Once the
necessary RSX information has been recorded, the scheduler
proceeds to run the next available task in the ready queue. Each
process is monitored over a pre-determined execution period
(e.g. one minute) that goes beyond the scheduler’s time slice.
This is performed to ensure that no premature actions are taken
unless the scheduler observes a continuous stream of RSX
instructions. The user receives an alert once the count of RSX
instructions surpasses a pre-defined threshold. This is shown
as step 4 in Figure 3. This approach allows us to reduce the
potential of false positives as a result of programs that may
experience short-lived peaks in the number of executed RSX
instructions. In our design, the monitoring period and threshold
for a process are dynamically programmable at runtime using
kernel tunables that can be updated using procfs. Finally,
to reduce the overhead of our detection system, our solution
limits its monitoring to non-root processes. We achieve this
by having the scheduler check for a non-zero uid before
performing any additional processing.

An important aspect of our design is concerned with the
detection of cryptojacking malware that distributes mining
across multiple threads to evade detection. To this end, our
system is designed to aggregate the count of rotate, shift, and
exclusive or instructions across launched threads that belong
to the same program. Although all threads created in Linux
will possess unique IDs, threads that are created from a single
process will share a common thread group ID (tgid). Based
on this, we maintain a shared structure (tgid_rsx_t) across
all the threads that belong to the same thread group (share
the same tgid). This shared structure is accessed within the
scheduler through the rsx_ptr pointer that is maintained
within the task_struct of each thread. The tgid_rsx_t
structure contains semaphored counters that are used to track
the count of the RSX instructions (rsx_count), as well as the
number of active threads referencing the structure (tcount).

struct tgid_rsx_t {
refcount_t rsx_count;
refcount_t tcount;

};

Listing 1: Data Structure for tracking RSX instructions.

The sharing of the tgid_rsx_t structure across multiple
threads is achieved through modifications in the kernel’s
_do_fork() routine that is used by the clone() system
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call. Whenever a light-weight process is created and before it
is activated, we examine the tgid. If the new light weight
process has the same tgid as its parent, then we simply
set the rsx_ptr field in the task_struct to point to the
parent’s existing tgid_rsx_t structure. However, if the par-
ent and the child have different tgid, a new tgid_rsx_t
is allocated and initialized. Listing 2 summarizes the logic
for sharing this structure across light-weight processes within
a multi-threaded program. Finally, the code makes use of
counters in the structure that are atomically referenced. The
tcount field is used to track the count of threads actively
using the structure. The structure is freed once tcount
reaches zero since this indicates that all the threads have been
terminated. The rsx_count field, on the other hand, is used
for tracking the overall number of RSX instructions.

long _do_fork(struct kernel_clone_args
*args) {

...
//Check if parent and child share same

tgid
if(p->tgid != parent->tgid) {

create_tgid_crypt_struct(p);
}
else {

p->rsx_ptr = parent->rsx_ptr;
}
wake_up_new_task(p);
...

}

Listing 2: Code sample for sharing the tgid_rsx_t
structure across threads that belong to the same thread group
(tgid).

V. METHODOLOGY

We conducted experiments using the gem5 cycle-accurate
simulator [7]. We modeled a 4-core, out-of-order x86 proces-
sor using the simulator in Full System mode integrated with
our solution. The configuration of the architectural parameters
we modeled are listed in Table I. In addition, we modified
the Linux v4.19.91 kernel that was configured to run the
Ubuntu 16.04 OS distribution. Furthermore, we characterized
the frequency of different instructions from the x86 ISA across
a variety of compute-bound and memory-bound workloads
present in the SPEC CPU2K6 benchmark suite [16], as well
as cryptographic functions such as SHA-2, SHA-3, and AES.
Each workload was characterized for a duration of 1 billion in-
structions for comparison. We used the SPEC2K6 benchmark
suite to evaluate the performance overhead of our solution. For
characterization purposes, we enabled gem5 to use multiple
performance counters that tracked a variety of x86 instruction
types separately while we tested our benchmarks.

To ensure coverage of our solution under different applica-
tion requirements, we tested more than 150 real user appli-
cations independently for a duration of one min. In addition,
we tested common applications that spanned four categories:
social, communication, productivity, and entertainment, more

Hardware Configuration
Cores 4 (out-of-order)
ISA x86
Frequency 2.0GHz
IL1/DL1 Size 32KB
IL1/DL1 Block Size 64B
IL1/DL1 Associativity 8-way
IL1/DL1 Latency 2 cycles
Coherence Protocol MESI
L2 Size 2MB
L2 Block Size 64B
L2 Associativity 16-way
L2 Latency 20 cycles
Memory Type DDR4-2400 SDRAM
Memory Size 3GB

TABLE I: Architectural configuration parameters.

extensively, for a duration of one hour. The aforementioned
categories and their corresponding applications tested over the
extended period are summarized in Table II. Since computer
systems are used in the context of productivity, we tested
our desktop environment (Ubuntu) against several productivity
applications. We also tested non-mining applications that are
cryptocurrency focused over the same one hour duration. This
included testing a variety of crypto-wallets that were connected
to live services, in addition to a decentralized application that
was configured to interact with a smart contract. Furthermore,
we evaluated Zcash and Monero workloads after dispatching
them to mine on live services. Finally, we used Intel’s Software
Development Emulator (SDE) [36] to record the executed
instructions as we interacted with each user application.

VI. EVALUATION

A. Instruction Breakdown in Benchmarks

We characterized a variety of instructions in SPEC2K6,
AES, in SHA-3, and SHA-2 in order to identify a reliable
set of instructions to be tracked by our design. This includes
shift left (SL), shift right (SR), exclusive or (XOR), rotate
left (RL), and rotate right (RR) instructions. We focus on the
aforementioned instructions since they are fundamental to the
SHA-3 and SHA-2 algorithms that are employed in popular
anonymous cryptocurrencies, such as Monero and Zcash.

Figure 5 shows the instruction count in millions after
running each workload for 1 billion instructions. We find that
the number of shift right operations (SR) are prevalent in SHA-
2. Although SHA-3 doesn’t use any SR operations as part of
its sponge construction, SR is central to the Σ and σ functions

Category Applications
Social Corebird (Twitter), Ramme (Instagram)
Communication Slack, Skype, WhatsDesk (WhatsApp)

Productivity

Calc (Excel), Impress (Power Point),
PDF, Writer (Word), Draw (Visio),
Gimp, Peek (Screen Recorder),
Everpad (Evernote), Eclipse,
VirtualBox, Thunderbird, Calendar,
Browser, Todoist, GitKraken

Entertainment Angry Birds, Spotify

TABLE II: Applications extensively tested over 1 hour period.
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Fig. 5: Number of Shift Right (SR) instructions (in millions).
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Fig. 6: Number of Shift Left (SL) instructions (in millions).

in SHA-2. This is evident by the 28M instruction count we
observe for SHA-2. However, despite SHA-2 having an SR
count that is 10x higher than the benchmarks in the SPEC2K6,
we find that AES exhibits 2.7x the amount of shift right oper-
ations compared to SHA-2. With the exception of SHA-3, we
observe that cryptographic functions have significantly more
SR instructions relative to the various SPEC2K6 benchmarks.
However, this is not the case for the shift left (SL) instruction.
For instance, Figure 6 shows that libquantum has 9x and 3x
the number of SL instruction compared to SHA-3 and AES,
respectively. As a result, SL instructions are an unsuitable
feature on their own for cryptojacking detection.

Unlike the previous instructions, we find that hash functions
exhibit a relatively high number of XOR instructions compared
to benchmarks in the SPEC2K6 suite. We observe an XOR
count of 170M and 337M for the SHA-2 and SHA-3 functions,
respectively. This is 4x and 8x higher than povray which had
the highest XOR count in the SPEC2K6 suite. Furthermore,
despite the XOR operation being fundamental to each round
of the AES encryption algorithm, we record 84M XOR in-
structions. Both SHA-2 and SHA-3 execute 2x and 4x the
amount of XOR instructions relative to AES over the same
billion instruction window. This is illustrated in Figure 7.

Figures 8 and 9 illustrate the count for the rotate right and
left instructions (RR and RL). We find an RR count of 89M and
33M in the case of SHA-2 and SHA-3, respectively. However,
unlike the aforementioned cryptographic functions, we observe
0 to 15 RR instructions across the rest of the workloads with
perlbench having the highest count. AES, on the other hand,
only had 3 RR instructions. This is illustrated in Figure 8.
Similarly, we see low occurrences of the RL instruction across
the different SPEC2K6 benchmarks in addition to AES. On av-
erage, we observe 85 RL instruction across the aforementioned
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Fig. 7: Number of Exclusive OR (XOR) instructions (in
millions).
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Fig. 8: Number of Rotate Right (RR) instructions (in millions).

workloads with perlbench having the highest count (1590
instructions). AES only had 37 RL instructions. Overall, we
find that RR and RL instructions serve as excellent features
for identifying cryptojacking behavior.

B. Mitigating Code Obfuscation Attacks

Our results demonstrate that rotate instructions in particular
represent excellent features for distinguishing between benign
and cryptojacking workloads. However, it is conceivable that
an attacker would use code obfuscation techniques that com-
bine different sequences of instructions to fulfill the same
rotation functionality as a way of subverting detection. An
attacker could replace n-bit left rotations (Rn

l ) with a sequence
of n-bit left shifts (Sn

l ), or (∨) operations, and m-bit right shifts
(Sm

r ), as illustrated by Equation (6a). A similar approach could
be applied for replacing an n-bit right rotation as shown in
Equation (6b).

Rn
l = Sn

l ∨ S64−n
r (6a)

Rn
r = Sn

r ∨ S64−n
l (6b)

Furthermore, an attacker could use a mix of rotate in-
structions and their shift/or equivalents in the same code,
as well as a combination of the aforementioned instructions
using different rotate/shift directions (left/right). Therefore,
to mitigate code obfuscation attacks, we propose using a
single performance counter. In other words, we only track
the cumulative sum of all rotate, shift, and exclusive or
instructions. Since our solution uses a programmable set of
instructions that can be updated via microcode, the design
can effectively track the appropriate instructions by tagging
them at the instruction decode stage. This approach also has
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Fig. 9: Number of Rotate Left (RL) instructions (in millions)
after executing 1 billion instructions.
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Fig. 10: Total number of Rotate (RR/RL), Shift (SR/SL), and
Exclusive OR (XOR) instructions (in millions).

the added benefit of keeping the hardware simple by only
requiring a single counter for the entire solution as opposed to
dedicating a different performance counter for each instruction
type.

Figure 10 shows the cumulative number of rotate left (RL),
rotate right (RR), shift left (SL), shift right (SR), and exclusive
or (XOR) after executing the benchmarks for 1 billion instruc-
tions. We refer to these as RSX instructions (rotate, shift,
and exclusive or). We find that the secure hash algorithms,
SHA-2 and SHA-3, exhibit an RSX count that is 3x and
3.5x higher relative to the libquantum benchmark. Despite
libquantum being the benchmark with the highest total
of RSX instructions in the SPEC2K6 suite, its count is well
below what we record for SHA-2 and SHA-3. For illustration
purposes, Figure 10 includes the cumulative count for AES
separately. However, on a deployed system, the number of
accumulated instructions in the AES workload (202M) would
be combined with the count collected from the SHA-2/SHA-
3 workloads. This is due to the fact that anonymous cryp-
tocurrencies, including Monero, incorporate encryption in their
algorithms as part of fulfilling their anonymity requirement.

In addition, an attacker may choose to encode a subset or all
XOR instructions using the OR operator (e.g. AB̄∨ĀB). In this
scenario, our RSX approach could be adapted to encompass
the OR instruction (RSXO). The cumulative count of RSXO
instructions is illustrated in Figure 11. We observe that the
RSXO count for SHA-2 and SHA-3 scales to 7x and 9x relative
to the libquantum benchmark. This result underscores the
ability of our solution to scale to different instructions while
remaining effective in detecting cryptojacking activity.
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Fig. 11: Total number of Rotate (RR/RL), Shift (SR/SL),
Exclusive OR (XOR), and OR instructions (in millions).

C. Characterization of Standard User Applications

To further validate our approach, we conducted experiments
using various user applications that span multiple categories.
We used a diverse set of applications from four different cate-
gories: social, communication, productivity, and entertainment.
The different categories and their corresponding applications
used in this experiment are summarized in Table II. Applica-
tions in each category were run interactively for a period of one
hour. This activity included streaming live video content over
a browser, creating and saving a variety of documents, reading
emails, and playing games. The cumulative rotate, shift, and
exclusive or instructions each application generated as a result
of the interaction is summarized in Figure 15.
Hash Instructions in Standard User Applications. We ob-
serve that on average, user workloads have 0.3 billion RSX in-
structions with five applications standing out in count: Ramme,
Angry Birds, Everpad, WhatsDesk, and Slack. Ramme is a
social media application that is equivalent to the popular
Instagram program. This application exhibits the highest count
across all user workloads with its overall RSX count reaching
5.2B. A close examination of this application shows 77% of
the RSX operations were shift related. On the other hand, 20%
of the remaining instructions were exclusive or operations.
Angry Birds, a game application, exhibits a different trend.
The vast majority of the RSX instructions were exclusive or
operations (61%), while only 33% of the instructions were
shift operations. Everpad, a note taking app that is equivalent
to the popular Evernote program, had a total of 2.1B RSX
instructions. A closer look into the Everpad application reveals
that over 69% of the RSX instructions were shift operations.
On the other hand, 31% of the remaining instructions were
exclusive or operations. We observe a similar trend with the
WhatsDesk application, a desktop version of WhatsApp. We
recorded a slightly reduced total of 1.3B RSX instructions.
We observe a similar trend in terms of the distribution of the
RSX instructions. We find that during execution, WhatsDesk
exhibited 67% and 31% shift and exclusive or operations, re-
spectively. The Slack application, another messaging platform,
observed a slightly lower RSX count relative to WhatsDesk.
We find that during execution, that application had a total of
0.9B RSX instructions. Although Slack had a lower RSX count,
it had a higher number of shift operations. We observed that
over 86% of the instructions were shift operations while 14%
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Fig. 12: RSX instructions in Monero, Zcash, and user appli-
cations in Table II after a one hour execution period.

of the instructions were exclusive or operations.
Standard Applications vs. Crypto Mining Services. We
compared execution traces from Monero and Zcash mining
services to the user applications listed in Table II. All appli-
cations were executed for one hour. Figure 12 summarizes
these results. Overall, we observe that cryptocurrency mining
workloads had a significantly higher RSX count relative to
the remaining user applications. For instance, we observe
that Monero had 342B RSX instructions over its one hour
execution period. This is more than 65x the RSX count relative
to Ramme which exhibited the highest RSX count among
the user applications shown in Figure 15, and more than
155x the RSX count relative to Angry Birds. We observe an
even higher RSX count in the case of Zcash. For example,
Zcash shows an RSX count that is three orders of magnitude
higher than Ramme while executing over the same one hour
period. Even when combining the RSX instructions of all the
user applications shown in Figure 15 which amounts to less
than 14B, the count is still 26x and 230x smaller than the
count observed by Monero and Zcash, respectively. While our
proof-of-concept focuses on evaluating the solution against the
core hash instructions (RSX), we show that a similar trend
can be observed when adapting our design to track RSXO
instructions. Figure 13 shows that even when combining the
RSXO instructions of all the user applications shown in Figure
13, Monero and Zcash’s RSXO count is 23x and 265x higher.

To better understand the contribution of the core hash
instructions (RSX) to user applications and cryptocurrency
services, Table III shows a breakdown of such instructions
over a one hour execution period. In addition to Monero and
Zcash, Table III shows the top five user applications with the
most RSX instructions, as well as, the combined cumulative
count for the remaining applications listed in Table II. We
observe that over an execution period of one hour, rotate in-
structions are primarily present in Monero and Zcash. All other
applications show less than one billion rotate instructions. In
the case of shift instructions, we find that with the exception
of Monero and Zcash, only Ramme and Everpad show an
instruction count that is above one billion. For instance, even
when we examine the overall count of shift instructions from
all the remaining user applications accumulated together, we
observe 0.6B instructions. We see a similar trend for exclusive
or instructions. We find that none of the applications’ XOR
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Fig. 13: RSXO instructions in Monero, Zcash, and user
applications in Table II after a one hour execution period.

Application Rotate Shift XOR Total RSX
Monero 83.1 10.2 248.3 341.6
Zcash 27.9 1.2 · 103 1.8 · 103 3.0 · 103
Slack 0.0 0.8 0.1 0.9
WhatsDesk 0.0 0.9 0.4 1.3
Everpad 0.0 1.5 0.7 2.1
Angry Birds 0.2 0.7 1.3 2.2
Ramme 0.1 4.1 1.1 5.2
Remaining 0.0 0.6 0.7 1.3

TABLE III: Summary of RSX instruction breakdown in bil-
lions across user and cryptocurrency applications.
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Fig. 14: Total RSX count over a one execution minute period
for (a) Ramme and (b) Monero.

instructions exceed the one billion mark except for Ramme
and Angry Birds. Finally, a close examination of the RSX
operations for Monero and Zcash show that the vast majority
of the instructions are in the form of XOR operations. For
instance, the XOR operation represents 73% of Monero’s RSX
instructions. A similar trend is observed with Zcash where
more than 59% of the RSX count are XOR instructions. We at-
tribute the elevated count in XOR instructions to the encryption
portion of the anonymous cryptocurrency algorithms. Overall,
the aforementioned data illustrates the effectiveness of using
RSX instructions as features for cryptojacking detection.

Figure 14 shows the cumulative count for rotate, shift,
and exclusive or instructions over an execution period of one
minute. We observe that the RSX for Monero is significantly
higher than what we record for Ramme. However, in order to
determine a suitable threshold value that results in a low false
positive rate, we tested a total of 153 user applications and
benchmarks with different threshold values over a one minute
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Fig. 15: RSX instructions in real user applications after a one
hour execution period.

execution period. Based on these experiments, we found that
selecting an RSX threshold of 2.5B inst./min enables us to
detect cryptojacking behavior involving the Monero and Zcash
cryptocurrencies with an accuracy of 100%. Furthermore,
we observed that false positives occur only when the core
cryptographic functions (AES, SHA-3, and SHA-2) them-
selves are run uninterrupted for extended periods. Even under
such circumstances, the false positive rate remains below 2%.
In general, running cryptographic functions for an extended
period is atypical and is often indicative of malicious activity.
For instance, continuously running AES on a system may be
indicative of ongoing ransomware activity. Nonetheless, this
can still legitimately occur in some infrequent cases, such as
a user encrypting a large file for confidentiality purposes. As
a result, we consider these cryptographic functions as part of
our evaluation for false positives.

D. Non-mining Cryptocurrency Applications

In addition to standard applications that are commonly used
by consumers, we tested a different type of user applications
that are cryptocurrency focused. We evaluated non-mining
cryptocurrency applications including different crypto-wallets
that were configured to issue transactions to live services
over a period of one hour. In addition to crypto-wallets, we
tested a decentralized application implemented in Solidity
that interacted with a smart contract over a period of one
hour. Figure 16 shows the results of this experiment. We
observe that the RSX count across the different crypto-wallet
applications (shown with -W appended to each cryptocurrency
type) ranges between 0.6B and 1.4B. This is 4.1x to 9.7x
less than the social media application, Ramme. Similarly, we
observe an RSX count of 0.9B for the decentralized application
shown as DApp in Figure 16. We see a similar trend for
the aforementioned applications when considering the RSXO
count. In this case, the RSXO ranges between 0.7B and 1.6B,
which is significantly less than what we recorded for the
application Ramme. This is illustrated in Figure 17.

E. Impact of Throttling on Detection

Prior work has shown that cryptojacking campaigns rely on
throttled execution as a way of evading detection [5], [17].
When attackers use throttling, they often set the throttle rate
to 30%. In other words, only 70% of the system’s processing
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Fig. 16: RSX instructions in non-mining crpytocurrency ap-
plications after a one hour execution period.
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Fig. 17: RSXO instructions in non-mining crpytocurrency
applications after a one hour execution period.

power is used [5]. To this end, we evaluate our solution’s
susceptibility to evasion techniques that leverage throttled
execution. In our evaluation, we periodically track the count
of RSX instructions for each process against a 2.5B RSX
inst./min threshold as part of classifying workloads as either
malicious or benign. To put things in perspective, Monero has
an RSX rate of 5.7B instructions per minute. Therefore, our
solution is able to detect cryptocurrency mining activity when
the most common throttling rate of 30% is used. Furthermore,
our solution can detect such activity with throttling rates that
exceed 50%.

In addition to RSX instructions, we explored supplemental
features that could be added in order to make our design more
resilient to throttling attacks. To this end, we considered mul-
tiple machine learning algorithms with a dataset that consisted
of 272 samples. We used the Principle Component Analysis
(PCA) algorithm to reduce the initial feature size from 527 to
11. The reduced feature set included load instructions such as
MOV, MOVSS, and MOVSD, as well as, arithmetic instructions
such as IMUL and ADD. Figure 18 summarizes the detection
rate of the tested models as a function of throttling rates. All
models performed well for throttling rates that ranged between
10% – 50%. However, we observed that SVM yielded the
best performance, providing a detection rate of 100% even
when execution was throttled by 95%. Logistic Regression
also offered similar detection capability for the 95% throttling
rate. However, this algorithm had a very high false positive
rate (FPR) of 40%. SVM, on the other hand, maintained an
FPR that was under 2% when execution was throttled by 95%.
Despite the robustness of our solution, an attacker may use
aggressively low throttling rates that are beyond 95% in order
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CPU Utilization Profit/Hour (XMR) Profit/Hour (USD)
100% 0.142 32.78
75% 0.106 24.58
50% 0.071 16.39
25% 0.035 8.194
5% 0.007 1.639
1% 0.001 0.328

TABLE IV: Estimated profit for different throttling rates.

to evade our solution. Although this is possible, we show that
the profitability of this approach diminishes significantly. Table
IV illustrates estimated profits for different throttling rates. For
instance, if an attacker uses throttling rates between 1% – 5%,
the profit per hour is estimated to be between $0.3 – $1.6. We
believe such returns on investment would render cryptojacking
unprofitable for attackers.

F. Performance Overhead

Overall, our solution is lightweight and incurs insignificant
overhead. We observe that all SPEC2K6 workloads exhibit
less than 1% overhead. The benchmark that exhibits the largest
overhead is omnetpp which experienced a 0.7% reduction in
performance. We observe a similar trend with povray which
experienced a 0.6% reduction in performance. All of the
remaining workloads had overheads that are below 0.5%. Such
low overheads underscore the efficiency of our approach.

VII. RELATED WORK

Multiple bodies of work [5], [14], [17], [20], [21], [38] ex-
plored different solutions in an effort to mitigate cryptojacking
attacks. Work by Hong et al. [17] explored a behavior-based
approach that relies on two runtime profilers for detecting
cryptojacking activity. In their work, the first profiler uses a
signature-based approach for detecting incoming cryprojack-
ing scripts. Their second phase, on the other hand, makes use
of a profiler that analyzes the call-stack of mining scripts
and looks for hotspot calling contexts in order to detect
cryptojacking activity. They achieve this by tracking calls into
commonly used hash libraries that are offered by browsers.
Kharraz et al. [20] analyzed Alexa Top 1M websites in order
to construct a dataset of benign and malicious JavaScript
code. They then applied machine learning algorithms, such
as SVM and random forest for classifying JavaScript prior to

its execution. They showed that their mechanism can achieve
a 97% detection rate. Unlike our work, these solutions are
limited to detecting cryptojacking activity that is confined to
the web browser.

Work by Konoth et al. [21] proposed the use of WebAssem-
bly (Wasm) to construct and detect cryptographic hashing
activity within a browser. They achieved this by performing
static analysis of Wasm. Unfortunately, this approach intro-
duces overhead to the browser’s execution model since it
requires static analysis [38]. It also makes the solution limited
to detecting cryptojacking code that is implemented in Wasm.
Furthermore, the solution makes use of performance counters
within the last level cache (LLC). Since the LLC is a common
resource across multi-core processors that could be running
other programs simultaneously, the values of the counters
could be significantly skewed. Similarly, work by Tahir et al.
[35] explored a performance counter-based approach. How-
ever, this work makes use of generic performance counters
such as page faults, and LLC access counters that are not tuned
to cryptographic workloads, which can lead to false positives.
Lachtar et al. [22] explored the initial idea of using a hardware-
based detector that our work builds upon.

Additional work by Eskandari et al. [13] examined Monero
mining through Coinhive. They found that a domain parking
service represented one of the biggest Coinhive campaigns that
ran Coinhive on more than 11,000 parked websites. Mining
Hunter [30], focused on the development of a crawler that
analyzed Javascript code in order to detect mining scripts.
Their framework was able to find several cryptojacking cam-
paigns including one that infected over 1100 websites through
malicious advertisement scripts. Liu et al. [23] developed
a solution that examined compiled JavaScript code within
the Chrome browser, while RAPID by Rodriguez et al. [31]
explored a learning-based approach for detecting in-browser
cryptojacking. They compared six different approaches that
relied on API calls and showed that their mechanism could
achieve a precision of 96% after analyzing Alexa top 330,550
sites. Virtually, all prior work that we are aware of focused on
detecting cryptojacking activity within the browser. Our work,
explores a generic end-to-end approach that enables detection
in an application agnostic fashion.

VIII. CONCLUSION

This paper presents an application agnostic design that
harnesses innovations at the microarchitecture and OS layers
for defending against cryptojacking attacks. We demonstrate
that a select set of instructions that are commonly employed
in cryptographic functions is sufficient for fingerprinting cryp-
tojacking activity. Our solution incurs minimal performance
impact and is resilient to multiple evasion techniques.
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