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Abstract—Mobile systems have evolved into versatile devices that end users depend on for carrying out their daily tasks.
Unfortunately, the mobile sector has recently fallen prey to a series of ransomware campaigns designed to lock users out of their
devices and extort them for payment. In response to these challenges, we propose a novel runtime system that dynamically restores
device access by undoing the effects of locker ransomware. A key observation made by this work is that attackers rely on the display of
a ransom note on the victim’s device to demand payment. Based on this observation, we develop a solution that combines the
monitoring of mobile app activity with a natural language processing (NLP) unit that harnesses transformers to detect the appearance
of ransom notes. We extensively validate the robustness of our solution against more than five thousand ransomware samples and
show that our solution reliably recovers from all the malicious samples that we tested, including overlay screen and change pin-code
ransomware. Finally, an evaluation of our proof-of-concept implementation shows minimal performance impact while running a mix of
mobile benchmark applications.
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1 INTRODUCTION

From virtual reality that swoons users in the metaverse
to on-the-go business carried out by road warriors, smart-
phones have evolved into the Swiss Army Knife of com-
puting that end users depend on for a wide range of tasks.
The year 2022 alone witnessed more than 255 billion mobile
application downloads [1] with 73% of such apps destined
to Android devices [2]. Unfortunately, the ubiquity of this
platform has garnered significant interest from cybercrime
gangs in recent years. For instance, Google officially an-
nounced that it removed more than one million risky and
untrustworthy applications from its Play Store [3]. This
occurred despite all the security checks its applications must
undergo before they are made publicly available. Such risks
are further amplified by downloads from third party app
stores that offer minimal screening for their published apps.
An experiment conducted by Allix et al. [4] demonstrated
that up to 75% of application downloads from third party
stores included malware. This trend underscores the ur-
gency for solutions that can intrinsically safeguard mobile
systems from malicious content.

Unfortunately, the mobile sector has recently fallen prey
to a series of aggressive ransomware attacks designed to
lock users out of their devices and extort them for payment.
From enticing campaigns conceived to ensnare victims to
creative obfuscation strategies concocted to evade detection,
cybercriminals have demonstrated notable success in com-
promising mobile devices. According to Kaspersky, more
than 4.2 million Americans have suffered ransomware at-
tacks on their mobile phones [5]. Another cybersecurity
firm confirmed that a slew of smartphone consumers were
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denied access to their devices after being hoodwinked by
CovidLock, an invasive form of locker ransomware that
masquerades itself as a legitimate Coronavirus tracker app
[6]. Sadly, the woes of this type of malware show no signs of
abating. In 2019 alone, an unprecedented 68,000 new mobile
ransomware samples were discovered. The sheer number of
ransomware variants in recent years has made it challenging
for solutions to scale their coverage and remain effective.
This trend underscores the importance of exploring solu-
tions that can detect and recover from such attacks.

In response to these challenges, researchers proposed
several defenses [7], [8], [9], [10], [11], [12], [13], [14] de-
signed to shield systems from locker ransomware. A large
body of this research [7], [8], [9], [10], however, focused on
the detection of locker ransomware in traditional computing
systems. For example, Kharraz et al. [7] employed a virtual
environment to monitor user activity within standard PC
systems. Ozsoy et al. [8] suggested the use of hardware per-
formance counters as a way of fingerprinting ransomware
behavior. Other solutions [9], [10] leveraged system level
features, such as opcode sequences, API calls, and registry
key operations for classifying ransomware. Other work
examined the detection of this kind of malware on mobile
platforms [11], [12], [13], [14]. For instance, [11] explored
the aspect of combining different heuristics from the CPU,
memory, and I/O subsystems for classifying ransomware.
More work [12], [13], [14] investigated the effectiveness
of static analysis in exposing ransomware when analyzing
resources, such as Dalvik bytecode and XML-based permis-
sion files. Unfortunately, these solutions are vulnerable to
obfuscation techniques that involve repackaging apps with
malicious content directly presented in native machine code
[15]. Virtually, all prior work we are aware of lack the ability
to recover mobile devices from locker ransomware after
infection.
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To address the shortcomings of the aforementioned
defenses, researchers proposed an assortment of recovery
techniques [16], [17], [18], [19], [20]. For example, [16]
utilized out-of-place writes in solid-state-drives to restore
maliciously encrypted data. Other work [19], [20] suggested
the use of backups for recovering maliciously impacted
data. All of these techniques, however, are limited to re-
covering data in systems compromised by cryptographic
ransomware. They also require manual intervention by the
user and often suffer from long data recovery periods.
Virtually, all of the prior work we are aware of lack the
ability to recover mobile devices from locker ransomware.

This paper presents a novel runtime system that dynam-
ically restores device access by undoing the effects of locker
ransomware. Unlike prior work, our solution seamlessly
safeguards compromised devices from such attacks without
the need for a manual recovery process or user intervention.
A key observation made by this work is that attackers rely
on the display of a ransom note on the victim’s device
to demand payment. Starting from this observation, we
propose a design that combines the monitoring of mobile
app activity with a natural language processing (NLP) unit
that harnesses transformers to detect the appearance of
ransom notes. We thoroughly evaluate the robustness of
our solution against more than 5K ransomware samples that
span more than 17 families. We show that our solution reli-
ably recovers from all the malicious samples that we tested,
including overlay screen and change pin-code ransomware.
We show that our experimental proof-of-concept exhibits
minimal performance impact while running a mix of mobile
benchmark applications [21].

Overall, this paper makes the following contributions:
• Proposes a novel runtime defense that protects mobile

devices from the effects of locker ransomware.
• Makes the observation that combining natural lan-

guage processing with transformers can be harnessed
to detect the appearance of ransom notes and conse-
quently identify the presence of locker ransomware.

• Discusses the impact of adversarial machine learning
while demonstrating the robustness of our solution
against such attacks.

• Presents an end-to-end runtime solution that incurs
negligible overhead across a wide range of standard
benchmarks.

• Characterizes the resiliency of our design against more
than 5K ransomware samples and shows that our
solution robustly recovers from the effects of all the
samples we tested.

The rest of this paper is organized as follows: Section
2 presents background information. Section 3 discusses the
threat model. Section 4 illustrates the design of the proposed
defense system. Section 5 presents the methodology and ex-
perimental framework used in this work. Section 6 discusses
the results of our evaluation. Section 7 details related work;
and Section 8 concludes.

2 BACKGROUND

2.1 Locker Ransomware
Locker ransomware is a form of malware that maliciously
appropriates a victim’s device while denying access to its

legitimate user. On mobile systems, this is accomplished by
changing the device’s pin code upon gaining root privilege.
Another common approach is to permanently overlay a new
window that prevents access to the system resources and
user installed apps. The malware then extorts the victim to
pay a ransom in return for restoring access to the infected
device. Payment is often accomplished through cryptocur-
rency based services since they offer end-to-end anonymity
of financial transactions. Unfortunately, paying the ransom
does not always guarantee restoration of the infected device.

Locker ransomware generally undergoes five primary
stages as part of its lifecycle. These stages include: ex-
ploitation and infection, delivery and execution, informa-
tion exchange, destruction, and extortion. A wide range
of methods have been reported for the initial stage of
exploitation and infection [22]. However, a combination
of social engineering techniques that leverage phishing
through social media, instant messaging, and seemingly
benign apps, are common ways for luring victims into
launching ransomware onto their devices [4]. Once such
malware is deployed on a given device, it swindles the vic-
tim into granting it administrator privileges. At this point,
the malware proceeds to the next stage by establishing a
communication channel with a command and control (C&C)
server. The channel is mostly used to share details about
the infected device and retrieve a set of commands to be
executed on the target. Once the necessary information has
been exchanged between the C&C server and the infected
device, the malware proceeds to the destruction stage that
results in the denial of access to the device. The process is
concluded by presenting a ransom note to the victim that
describes the payment details and recovery instructions.

2.2 Transformers

Transformers have demonstrated significant promise in
solving NLP tasks [23], [24], [25]. A core component of this
architecture relates to its encoder-decoder structure that in
turn consists of other subcomponents.
Encoder and Decoder Stacks. The encoder serves the pur-
pose of mapping sequences of symbols (x1, ..., xn) to a
sequence of continuous representations z = (z1, ..., zn). It
consists of N identical blocks where each block contains two
layers: multi-head attention and position-wise fully con-
nected network layers. Each of these layers is surrounded by
residual connections and followed by layer normalization in
order to speed up training. Input is presented in the form of
positional encoded word embeddings in order to keep track
of the order of the input sequence. The decoder, on the other
hand, assumes the task of generating the output sequence
of symbols (y1, ..., yn), from a sequence of representations z.
Unlike the encoder, the decoder includes a third layer that
performs multi-head attention on the encoder’s output.
Attention. Attention is the process of mapping a query and
key-value pairs to an output, where the query, keys, values,
and output are all vectors. The attention within a given
transformer that involves a query, key, and value matrices
Q, K, and V, is computed using the scaled dot-product
illustrated in equation (1). The

√
dk term is used for scaling

where dk is the dimension of the input K. This mechanism of
computing the attention is repeated several times in parallel
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for different linear projections of the input. The output is
then concatenated and multiplied by an additional weight
matrix resulting in what is called multi-head attention. The
output of the multi-head attention layer is then used as
input into a position-wise fully connected network layer.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Position-wise Feed-Forward Network. The encoder and
decoder of a given transformer contain a fully connected
feed-forward network. This step consists of two linear trans-
formations with a ReLU activation in between. The position-
wise feed-forward network is expressed using equation (2).

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

Embeddings and Softmax. Input and output tokens are
converted to dimensional vectors using learned embed-
dings. The final decoder output runs through a learned
linear transformation followed by a softmax layer to convert
the outputs to subsequent token probabilities.

After the introduction of transformers [23], [24] pro-
posed the use of Bidirectional Encoder Representations from
Transformers (BERT) as an enhancement for solving NLP
tasks. This architecture consists of a bidirectional encoder
that learns information from both the left and right sides
of a word’s context during the training phase. In addition
to enhancements made by BERT, a more recent architecture
was introduced, namely, XLNet [25]. Unlike BERT, XLNet
leverages a generalized autoregressive pre-training method
that enables learning bidirectional contexts more efficiently.
Our work examines both of these architectures and evalu-
ates their suitability for detecting ransom notes.

3 THREAT MODEL

In this section we detail the assumptions we make about the
attackers and how it applies to our design. Our solution is
designed to protect mobile systems against ransomware that
deliberately locks victims out of their devices. In general, we
make the assumption that ransomware is installed through
the proper mechanisms already supported by the device’s
platform. For instance, an attacker can publish seemingly
benign .apk files on a mobile application provider, such as
Google Play Store that victims unwittingly install onto their
devices. Overall, we make the assumption that any of the
following ransomware types can be launched on a system:

• Overlay Screen Ransomware. This type of malware is
assumed to have the ability to pop a new window that
overlays on top of other apps, and consequently, pre-
vent the victim from utilizing their device [26]. Attack-
ers generally rely on social engineering techniques,
such as phishing emails and websites, social media,
torrent sites, instant messaging apps, and third-party
app stores to infect a victim’s device with ransomware.

• Lock Screen and Pin Code Ransomware. This type
of ransomware is assumed to have the ability to
change the pin code of a victim’s lock screen, and
consequently, deny access to the device. Akin to the
aforementioned category, attackers rely on social engi-
neering strategies for infecting users [27].

In addition to the above, we make the assumption
that the attacker is aware of the architecture of our NLP
module, and is therefore, capable of conducting adversarial
text attacks to evade detection. Another possible attack
involves physical access to a device. This method, how-
ever, contradicts an important objective ransomware aims to
achieve. Ransomware campaigns are often concerned with
compromising as many users as possible in order to remain
profitable. As such, we do not envision physical attacks
being a practical approach in this case.

4 THE SNIPER DEFENSE SYSTEM

We propose Sniper, a novel system that dynamically restores
device access by undoing the effects of locker ransomware.
A key observation made by this work is that attackers rely
on the display of a prominent ransom note on the victim’s
device to demand payment. Starting from this observation,
we devise a solution that combines app activity monitoring
with an intrinsically AML hardened NLP unit that doesn’t
require retraining. The NLP unit harnesses transformers to
accurately detect the appearance of ransom notes. Our de-
sign incorporates three primary components: an activity and
service monitor that monitors newly installed apps and their
associated actions that could result in a device being locked;
a text classification unit for detecting ransom notes on an
infected device; and a recovery unit that restores device
access when locker ransomware is detected. An overview
of our defense is shown in Figure 1.

Unknown App Admin App Service Monitor Activity Monitor Screenshot

Text 
Extraction NLP Module

****

Screen Locked Notify & Recovery

1 2

5

3 4

6 87

Fig. 1: Overview of the ransomware defense system.

4.1 Activity and Service Monitor

Our solution is designed to monitor newly installed apps
and their associated actions that can result in a mobile
device being locked. An important characteristic that dis-
tinguishes locker ransomware from other apps relates to
its dependence on administrator privileges. This is because
actions, such as locking a screen, setting password rules, and
erasing data from a device often necessitate administrative
access. As a result, step 1 of our detection process begins
with tracking administrator privilege requests.

In Android, communication between running apps
and the underlying OS is accomplished through in-
tents. As such, our design monitors system broad-
casts that involve the DEVICE_ADMIN_ENABLED intent
as a way of tracking deployed apps and their asso-
ciated privileges. Once a given app has received the
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of illgeal contents downloading and distributions. 
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Fig. 2: Main components of the NLP module with an example of how text from a ransom note is progressively transformed.

DEVICE_ADMIN_ENABLED intent in response to an adminis-
trator request (ACTION_ADD_DEVICE_ADMIN), privilege is
deemed granted, and the app is tagged for further analysis.
At this point, our design proceeds to the next step and
monitors foreground service requests that are issued by
the newly established administrator app. In addition to
the aforementioned, our solution tracks pin code change
requests. This is used to enable recovery and pin restoration
in the event that the app is deemed malicious.

Unlike cryptographic ransomware that often runs as
a background service, locker ransomware uses a different
approach. It aggressively asserts itself as a prominent ac-
tivity that overtakes the victim’s screen as a mechanism
for denying access to the compromised device. As such,
foreground service requests represent another important
feature for identifying locker ransomware behavior. Our
design accounts for this activity under step 2 of Figure 1.
In the event that an app elects itself to run as a foreground
process, our design tags the app as suspicious and proceeds
to step 3 . At this stage, our solution observes all of the
activities the suspicious app displays to the user interface.
To make our design efficient, our defense restricts its anal-
ysis to newly displayed activities and content updates that
modify the device’s user interface. To accomplish this, our
design monitors the TYPE_WINDOW_STATE_CHANGED and
TYPE_WINDOW_CONTENT_CHANGED events that are trig-
gered when either a new window is launched or updated
content is loaded. Hence, any time any of the aforemen-
tioned events are triggered, our solution captures the dis-
played content in the form of an image. It then extracts any
text that may be embedded within the captured image and
sends it to the NLP module for classification. These actions
are illustrated in Figure 1 as steps 4 – 6 .

4.2 Text Classification

The text classification subsystem serves the purpose of
detecting ransom notes on an infected device. Once text has
been extracted from the device’s user interface, the data is
consumed by an NLP unit for classification. To safeguard
our design from text based attacks, we augment our system
to be adversarially aware. As such, we harden our solution
to be resilient against various adversarial machine learning
(AML) attacks including character level attacks, word level
attacks, and sentence level attacks. To support this approach,
any text that is received by the NLP module undergoes
three main phases: canonical transformation, adversarial
detection, and word sequencing with lemmatization. An

overview of the main components that make up this module
is shown in Figure 2.
Canonical Transformation. This phase entails transforming
input data into a standard form that can be consumed by
the classification model. It begins with the removal of noisy
symbols that could impact the text classification process.
For instance, HTML tags and other non-printable characters
are removed from the original input. Similarly, symbols that
are commonly used for punctuation, such as hyphens and
accents, are eliminated from the text. Upon completion of
the aforementioned pre-processing, the canonical transfor-
mation phase proceeds to masking parts of the data (data
masking). This entails the removal of identifiers, such as
uniform resource locators (URLs) and email addresses. The
overall canonical transformation phase is concluded with
a text standardization step. During this step, all of the
retained text is made uniform by converting it to lowercase
characters. This step simplifies the parsing of data in the
later phases of the NLP module.
Adversarial Detection. One of our design objectives is to
ensure sufficient protection against AML attacks. Research
has shown that adding small perturbations to input are suf-
ficient for an attacker to misclassify the input with high con-
fidence [28]. As such, an attacker can fool a detection system
by carefully positioning perturbations in the form of charac-
ters and words into a ransom note. For instance, an attacker
could leverage text from a previously released ransomware
and replace a subset of its words with synonyms. Similarly,
an attacker could harness different character manipulation
techniques to evade detection without compromising the
victim’s ability to comprehend the ransom note [29]. This
can be in the form of substitution, swap, insertion, and even
deletion of characters in a given word.

To address the aforementioned concerns, our design
takes into account the linguistic correctness of a given
ransom note. As a result, any text that is received by this
component is subjected to a series of rules that perform
spelling and grammar corrections. To this end, our design
discovers errors in text using a set of predefined rules
referred to as bad rules. Such errors are then corrected using
another set of rules, namely, good rules. More specifically,
our design accomplishes error detection and correction by
breaking the input into chunks. Once split into chunks, each
word in a given chunk is assigned a part-of-speech (POS)
tag. The generated chunks are then compared against a
rigorous set of error rules (bad rules). If a match occurs,
an error is detected, and is subsequently corrected using
the appropriate good rule. This approach ensures that ad-
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versarially manipulated words through character swaps,
deletions, and insertions are rectified prior to the text being
used in the classification stage.
Word Sequencing and Lemmatization. This stage assumes
the role of tokenizing the data received from the adversarial
detection phase into a sequence of meaningful words. The
primary purpose of this step is to encode words, so that
the context of a given phrase is preserved. The module also
includes the removal of stop words (unimportant words),
such as “the,” “is,” and “are” that don’t add contextual
meaning to a given sentence [30]. Stop word removal also
has the benefit of improving the latency of the overall
system since this results in less words being processed by
the remaining stages of our design [31].

Once the stop words have been removed, the collected
words (tokens) are transferred to the lemmatization step.
This step assumes the role of mapping each word to its
uninflected root (lemma). Since a given word could appear
in multiple forms, it is essential to determine a common root
that represents all the variations associated with a given
word [32]. Therefore, lemmatization ensures that words,
such as “gone” and “going” are mapped to a single root
of the word, “go.” This step also has the benefit of hard-
ening the system against adversarial text attacks since this
approach reduces the search space available to an adversary.
Once this step has been completed, the lemmatized text is
fed into a pre-trained NLP model for final classification as
either benign or malicious.

4.3 Device Recovery and Pin Restoration
Our solution is designed to restore device access in the event
that locker ransomware is detected. To this end, once the
NLP module flags input text as being malicious, the entire
app is consequently treated as malicious (step 7 ). At this
stage, further action is taken by our design to restore access
to the compromised device (step 8 ). Our recovery process
involves a series of actions including permission revocation,
app deletion, and user notification. For instance, if an app
has been deemed malicious (e.g. created a malicious pop up
that prevents device access), our design responds by imme-
diately revoking the administrator privilege associated with
the app. It then proceeds to deleting the app and all of its
associated files. Once the app has been deleted, a system
reboot is issued. This approach safeguards the user from
accidentally paying the ransom. Once the device has been
rebooted, the app is no longer considered active and an alert
is sent to the user to inform them about the app removal.

Unlike the screen overlay approach that prevents the
user from selecting other apps, some ransomware families
deny access to their victims by modifying the screen lock
pin code of the device. To safeguard against this form of ran-
somware, our previously discussed service monitor assumes
the role of tracking pin code change requests. As such,
whenever a ransom note is detected and a pin code request
was recorded, our solution resets the pin to a default value
(e.g. 0000). To keep the user informed about this action, pin
code resets are followed by a notification to the impacted
user. The notification is used to inform the user about the
newly established pin. On the other hand, if a given app
is deemed benign in step 7 and the pin code has not

been changed, the previously captured image in step 4 is
discarded and a new evaluation cycle is initiated (transition
from step 7 back to step 3 ). Our design continues to
evaluate the running foreground app that has administrator
privileges over a programmable duration (e.g. 30 seconds).
If the app does not exhibit any malicious behavior over the
aforementioned programmable period, the app is deemed
benign.

5 METHODOLOGY

Training experiments were conducted on a system equipped
with two Intel Xeon Gold 6152 processors, 768 GB of main
memory, and an NVIDIA Tesla V100 GPU. We re-purposed
a diverse set of models that are popular in the field of NLP
to perform ransomware detection. In our experiments, we
re-purposed a convolutional neural network (CNN) [33],
a standard recurrent neural network (RNN) [34], a long
short term memory (LSTM) based RNN [35], and a gated
recurrent unit (GRU) based RNN [36]. In addition, we
employed two transformer based models, namely BERT [24]
and XLNet [25]. All of our models were pre-trained using
the Google News word embedding [37] that corresponds
to a 3 million-word corpus represented in the form of a 300-
dimensional vector. We used TensorFlow 1.12.0 with Python
3.6 for training the CNN and RNN based models. BERT
and XLNet, on the other hand, were trained using Pytorch
1.2.0 [38]. All of the models were trained with the Adaptive
Moment Estimation optimizer (Adam). We explored differ-
ent configurations including various batch sizes, learning
rates, dropout rates, and epochs in order to identify the
optimal settings for each model. To construct our dataset,
we extracted ransom notes from 5,524 ransomware samples
that were supplemented with 8,000 benign sentences from
the Internet Movie Database (IMDB). We dedicated 80% of
this dataset for training, 10% for validation, and 10% for
testing. The final hyperparameters we deployed across the
different models are summarized in Table 2.

We conducted experimental evaluations using 5,524 live
samples that spanned 17 distinct ransomware families ac-
quired from [39] and [15]. Our dataset consisted of both
overlay screen and pin code ransomware. All of the ran-
somware samples we tested were executed on an Android
11 platform for a minimum of 10 minutes or until the
display was locked. The Android image was rolled back to a
pristine snapshot after every executed sample. This was per-
formed to reduce the possibility of previously executed ran-
somware interfering with subsequent runs. The ransomware
families we used and their corresponding characteristics
are listed in Table 1. Our dataset also included unclassified
samples that did not belong to any known families. These
samples are denoted as ”other” in Table 1. In addition to
ransomware samples, we tested 220 benign apps in order to
assess the accuracy of our defense in terms of false positives.
More specifically, we evaluated applications from multiple
categories including health and fitness, productivity, social,
entertainment, travel and local, and communication.

We implemented a prototype of our solution on a real
platform using the Stratus C5 Elite smartphone that ran
Android 11. We used the PaddleOCR v2.8.1 tool [40] to
extract text displayed on the device’s user interface. Since
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Family Samples Lock Screen Payment Method Threatening Defeated Discovered
Overlay Screen Change Pin Code Traditional Electronic Message Month

Jisut 777 ✓ ✗ ✓ ✓ ✓ ✓ 2014-6
Pletor 34 ✓ ✗ ✗ ✓ ✓ ✓ 2014-6

SimpleLocker 946 ✓ ✗ ✓ ✗ ✓ ✓ 2014-6
Aples 33 ✓ ✗ ✗ ✓ ✓ ✓ 2014-7
Koler 483 ✓ ✗ ✗ ✓ ✓ ✓ 2014-9

LockDroid 215 ✓ ✗ ✗ ✓ ✓ ✓ 2014-10
Svpeng 22 ✓ ✗ ✓ ✗ ✓ ✓ 2014-10
Slocker 699 ✓ ✗ ✓ ✗ ✓ ✓ 2015-5

Xbot 13 ✓ ✗ ✗ ✓ ✓ ✓ 2015-5
LockerPin 54 ✗ ✓ ✓ ✗ ✓ ✓ 2015-9

Fusob 1,354 ✓ ✗ ✗ ✓ ✓ ✓ 2015-10
PornDroid 241 ✓ ✗ ✗ ✓ ✓ ✓ 2015-10

WipeLocker 7 ✓ ✗ ✗ ✓ ✓ ✓ 2015-10
Charger 11 ✓ ✗ ✗ ✓ ✓ ✓ 2017-1

WannaLocker 14 ✓ ✗ ✗ ✓ ✓ ✓ 2017-6
DoubleLocker 16 ✗ ✓ ✗ ✓ ✓ ✓ 2017-10

MalLocker 7 ✓ ✗ ✗ ✓ ✓ ✓ 2020-10
Other 598 N/A N/A N/A N/A N/A N/A N/A

TABLE 1: Summary of ransomware families and their capabilities.

Hyperparameter RNN, LSTM, GRU CNN BERT, XLNet
# of epochs 100 50 5
Batch size 64 32 32

Embedding dim. 300 300 768
Optimizer Adam Adam Adam

Learning rate 0.001 0.001 1e-5
Dropout rate 0.5 0.5 0.1

TABLE 2: Summary of hyperparameters used in all models.

Suite Benchmark

CPU

Integer Math (IM), Floating Point Math (FPM),
Find Prime Numbers (FPNs), Random String Sorting (RSS),
Data Encryption (DE), Data Compression (DC), Physics,
Extended Instructions (EIs), Single Thread (ST)

Memory
Database Operations (DOs), Memory Read Cached (MRC),
Memory Read Uncached (MRU), Memory Write (MW),
Memory Latency (ML), Memory Threaded (MT),

I/O
Internal Storage Read (ISR), Internal Storage Write (ISW),
External Storage Read (ESR), External Storage Write (ESW)

2D Graphics
Complex Vectors (CVs), Transparent Vectors (TVs), Solid
Vectors (SVs), Image Rendering (IR), Image Filters (IFs)

3D Graphics Simple Test (ST), Complex Test (CT), OpenGL

TABLE 3: Summary of performance benchmarks.

our models were trained to process text written in the
English language, we leveraged the GoogleTrans 3.0.0 tool
[41]. This allowed us to detect input text written in other
languages and translate it into English prior to running it
through the NLP model. Furthermore, we characterized the
runtime and energy overhead of different models in order to
identify their suitability for deployment on mobile devices.
We ran a diverse set of test suites available in PassMark
[21], a commonly used benchmark for measuring the per-
formance of Android devices. This benchmark allowed us
to characterize our design’s sensitivity to a comprehensive
set of CPU, memory, I/O, and graphics workloads. The
aforementioned test suites are listed in Table 3.

6 EVALUATION

6.1 Model Robustness

6.1.1 Non-deep Learning Models
Although our study focused on the use of deep learning
models, we initially explored lightweight classifiers, such
as random forest, support vector machine, and logistic
regression to understand their effectiveness in detecting
locker ransomware. The results of this experiment along
with the models we tested are shown in Figure 3. Overall,
we observed that the models in the aforementioned Figure
performed well when tested against a non-adversarial test
set (Non-Adv). This test resulted in detection rates that
ranged between 85.2% and 97.2% with a geometric mean
of 95.0%. Although lightweight models are attractive for
deployment in resource constrained mobile devices, it is
important to understand their robustness against adversar-
ial machine learning attacks. To this end, we augmented
our non-adversarial test set (Non-Adv) with different types
of perturbations to produce three AML test sets: Deep-
WordBug (DWB) [42], Genetic Algorithm (GA) [43], and
Probability Weighted Word Saliency (PWWS) [44].

Our first AML test set, DWB, is a test set that focuses
on character level text attacks. It evades detection by ma-
nipulating key words in a given text through two phases.
The first phase entails identifying the importance of words
in a given text based on equation (3). In this equation,
the importance of the i-th word in a given text (x1, ..., xn)
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Fig. 3: Summary of detection rates for non-deep learning
models with adversarial and non-adversarial test sets.
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is computed using the Score(xi). λ is a hyperparameter,
and F is the model’s function that maps an input X to a
label Y . An example of adversarial text generated using this
approach is shown in Figure 4.

Score(xi) = [F (x1, . . . , xi)− F (x1, . . . , xi−1)]

+ λ[F (xi, . . . , xn)− F (xi+1, . . . , xn)] (3)

Overall, our results show that the non-deep learning
models listed in Figure 3 were less effective in detecting
adversarially designed inputs. For instance, the aforemen-
tioned models yielded detection rates that ranged between
28.0% and 54.8% when evaluated against the DWB test set.
In general, the detection rates did not exceed 54.8%. This
correlates to more than a 40% drop relative to what we
observed with the non-adversarial test set (Non-Adv). In
our experiments, we found that one of the simplest models,
naı̈ve bayes, exhibited the best performance which yielded
a mere detection rate of 54.8%. Popular algorithms, such as
SVM performed even more poorly, since it was incapable of
detecting no more than 51.0% of the adversarially designed
malicious samples.

In addition to DWB, we explored the use of a genetic al-
gorithm (GA) to produce supplemental adversarial samples.
More specifically, we used the nearest neighbor replacement
algorithm defined in equation (4) for generating our GA
based test set. In this equation, Xadv represents the ideal
adversarial sample that would deceive a target model f
into giving false results. P (g−1), on the other hand, denotes
the (g − 1)th generation. Unlike DWB, GA is a word level
attack that makes use of the Euclidean distance to reduce
the difference in semantics between the original word and
its adversarial replacement. An example of adversarial text
generated using the GA approach is shown in Figure 4.

Xadv = P
(g−1)
arg max f(P g−1)target

(4)

Similar to the DWB experiment, our GA results yielded
detection rates that ranged between 29.5% and 56.5%. On
average, we observed a detection rate of 50.4% across the
different models. Analogous to the DWB experiment, naı̈ve
bayes offered the best performance (56.5%) while adaptive
boosting performed the worst (29.5%). Analogous to charac-
ter level attacks, our GA results demonstrate that attackers
can adversarially compromise non-deep learning models
through word level attacks.

Original
ATTENTION! your phone has been locked due to suspicion of illegal contents downloading 
and distributions. You must pay a fine of $500 to unlock your phone.        Positive (82%)

Adversarial (DWB)
ATTENTION! your phone has been locked due to sspicion of illegal contents downloading 
and distributions. You must pay a fine of $500 to unlock your phone.        Negative (72%)

Adversarial (GA)
NOTICE! your phone has been locked due to suspicion of illegal contents downloading and 
distributions. You must pay a fine of $500 to unlock your phone.        Negative (83%)

Adversarial (PWWS)
ATTENTION! your phone has been locked due to suspicion of illegal contents downloading and 
distributions. You must pay a fee of $500 to unlock your phone.        Negative (85%)

Fig. 4: Original text example and the corresponding adver-
sarial samples generated using DWB, GA, and PWWS.

Probability Weighted Word Saliency (PWWS) is another
approach that our study considered for producing adver-
sarial data. Similar to GA, PWWS is a word-level attack that
evades detection by replacing words with their synonyms
using WordNet 2. This approach also relies on an opti-
mization procedure for finding the appropriate substitutions
by maximizing the word saliency from a set of selected
synonyms. Although PWWS is a word-level attack, we
extend this method to also perform sentence level attacks
by perturbing the ordering of the words in a given phrase.

The optimization procedure used in this method is illus-
trated in equation 5. In this equation, R(wi, Li) represents
the best replacement synonym w∗

i of the ith word in a given
text x. x′

i is obtained by replacing the ith word in x with each
candidate synonym. P (Y |x) is the probability for classifying
text x, such that the target model can be fooled. An example
of adversarial text generated through PWWS is shown in
Figure 4.

We observed that the non-deep learning models in Fig-
ure 3 were slightly resilient in detecting adversarial attacks,
but still performed poorly. The aforementioned models
yielded detection rates that ranged between 35.8% and
60.3% when evaluated against the PWWS test set. On av-
erage, the models showed a 3.8% and 5.8% improvement in
detection rates relative to DWB and GA, respectively. How-
ever, despite this slight improvement, our results show that
non-deep learning models are still vulnerable to adversarial
samples generated using the PWWS approach. Overall, our
results underscore the need for superior models that can
offer better protection against AML generated data sets.

R(wi, Li) = arg max P (Ytrue|x)− P (Ytrue|x′
i) (5)

6.1.2 Deep Learning Models

We examined a diverse set of deep learning models that
were trained to detect locker ransomware. We evaluated a
convolutional neural network (CNN) [33], a standard recur-
rent neural network (RNN) [34], a long short term memory
(LSTM) RNN [35], and a gated recurrent unit (GRU) RNN
[36]. In addition, we employed two transformer based mod-
els, BERT [24] and XLNet [25]. All of the aforementioned
models were evaluated against commonly used quality
metrics that include: accuracy, true positive rate (TPR), false
positive rate (FPR), recall, F-score, and area under the curve
(AUC). Furthermore, all of the models were tested against
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Fig. 5: Summary of detection rates for deep learning models
with adversarial and non-adversarial test sets.
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Model Accuracy TPR FPR Recall F-score AUC
CNN (Non-Adv) 1 1 0 1 1 1

CNN (DWB) 0.997 0.985 0 0.985 0.992 0.992
CNN (GA) 0.990 0.952 0 0.952 0.975 0.976

CNN (PWWS) 0.998 0.992 0 0.992 0.996 0.996
RNN (Non-Adv) 1 1 0 1 1 1

RNN (DWB) 0.963 0.815 0 0.815 0.898 0.907
RNN (GA) 0.984 0.920 0 0.920 0.958 0.960

RNN (PWWS) 0.988 0.942 0 0.942 0.970 0.971
LSTM (Non-Adv) 1 1 0 1 1 1

LSTM (DWB) 0.992 0.960 0 0.960 0.979 0.980
LSTM (GA) 0.987 0.935 0 0.935 0.966 0.967

LSTM (PWWS) 0.987 0.937 0 0.937 0.967 0.968
GRU (Non-Adv) 1 1 0 1 1 1

GRU (DWB) 0.990 0.952 0 0.952 0.975 0.976
GRU (GA) 0.975 0.877 0 0.877 0.934 0.938

GRU (PWWS) 0.986 0.932 0 0.932 0.965 0.966
BERT (Non-Adv) 1 1 0 1 1 1

BERT (DWB) 0.998 0.992 0 0.992 0.996 0.996
BERT (GA) 0.999 0.997 0 0.997 0.998 0.998

BERT (PWWS) 0.999 0.997 0 0.997 0.998 0.998
XLNet (Non-Adv) 1 1 0 1 1 1

XLNet (DWB) 0.999 0.997 0 0.997 0.998 0.998
XLNet (GA) 1 1 0 1 1 1

XLNet (PWWS) 1 1 0 1 1 1

TABLE 4: Summary of quality metrics of NLP models using Non-Adv and DWB, GA and PWWS adversarial test sets.

the same non-adversarial and adversarial datasets: Non-Adv,
DWB, GA, and PWWS.

Our results indicate that all of the deep learning mod-
els achieved ideal performance under the Non-Adv dataset
(100% detection rate). Unlike the non-parametric models,
none of the deep learning designs yielded any false positives
or negatives while using the non-adversarial dataset. This
correlates to a 5% improvement relative to the rates achieved
by the non-parametric models previously depicted in Figure
3. In addition, we observed a significant improvement in
the ability to detect adversarially designed ransom notes.
On average, the deep learning models demonstrated a 45%
increase in the ability to detect malicious samples that span
the DWB, GA, and PWWS datasets.

Figure 5 reveals that XLNet outperformed the remaining
models with BERT being a close second. Our results de-
mostrate that the transformer based models offered better
performance over their CNN and RNN counterparts across
all the metrics depicted in Table 4. For instance, XLNet and
BERT detected 99.7% and 99.2% of the DWB samples. This
correlates to XLNet and BERT having one and three false
negatives, respectively.The CNN model, on the other hand,
experienced a slightly lower detection rate (98.5%) which
corresponds to six malicious samples going undetected. Un-
like the transformer and CNN models, however, combining
our solution with RNNs resulted in suboptimal detection
rates. Although such models previously represented the
state-of-the-art in the field of NLP, the standard, LSTM, and
GRU based RNNs misclassified 74, 16, and 19 DWB samples,
respectively. This data suggests that RNNs are less effective
in combating sophisticated forms of locker ransomware that
employ AML techniques to evade detection.

A similar trend was observed with the GA and PWWS
datasets. Overall, our transformer based models performed
slightly better while using the aforementioned datasets. We
observed that XLNet classified all of the GA and PWWS
samples correctly. Similarly, BERT exhibited near ideal de-
tection rates by misclassifying only one malicious sample

from each dataset. The CNN model, on the other hand,
experienced a 3% drop while using the GA dataset (95.2%).
The CNN model, however, improved its detection rate to
99.2% while using the PWWS dataset. This correlates to
only three samples being undetected. On the other hand,
the RNN models manifested suboptimal detection rates that
ranged between 87.7% and 94.2%. This correlates to an
average that is slightly above 92% when evaluated with
samples from the GA and PWWS datasets. We attribute
the high detection rates of transformer models like BERT
and XLNet to their ability to capture bidirectional context.
Unlike RNNs that process text sequentially, and CNNs that
rely on local patterns, transformers handle entire sentences
simultaneously, providing a more comprehensive under-
standing. The self-attention mechanism enables transform-
ers to understand complex relationships and long-range
dependencies between words in a given sentence.

To further evaluate the robustness of the deep learning
models, we trained these models using a training set that
consisted of older ransomware samples released between
2014 and 2015. We then tested the trained models against
a test set (unseen ransomware) that comprised of samples
from 2017, 2020, and other. A summary of the detection rates
for these models against the unseen ransomware test set is
illustrated in Figure 6.

Overall, we observe that XLNet outperformed all the
other models, achieving a detection rate of 99.6%, closely
followed by BERT with a detection rate of 99.3%. These
results reinforce that transformer-based models are partic-
ularly effective at identifying ransomware, even when faced
with previously unseen samples. In comparison, the CNN
model exhibited a slightly lower detection rate of 98.6%.
On the other hand, the RNN-based models were less adept
to detecting unseen ransomware samples. For instance, the
RNN, GRU, and LSTM models achieved detection rates of
93%, 96.6%, and 97.8% respectively when tested against the
unseen ransomware test set.

Altogether, our results show that XLNet exhibited supe-
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Fig. 6: Summary of detection rates for deep learning models
against unseen ransomware test set.

rior performance in detecting unseen ransomware samples
and demonstrated the most resilience against adversarial at-
tacks. Although the BERT and CNN models produced com-
petitive detection rates, XLNet consistently outperformed
all of the models across a diverse set of evasion tech-
niques that span, character (DWB), word (GA), and sentence
(PWWS) level attacks. Although devising defenses that can
scale to detect unseen forms of ransomware while remaining
robust against AML attacks is critical, other factors, such as
energy and runtime must be considered in the context of
mobile platforms.

6.1.3 Model Runtime and Energy

The performance overhead of our defense is primarily a
function of the runtime associated with the text classification
module. To this end, we conducted runtime and energy
efficiency experiments across the different NLP models in
order to understand their suitability for deployment on
mobile devices. Figure 7 shows the runtime of different NLP
models based on measurements from our prototype system.

Overall, we observed that XLNet achieved the best per-
formance in terms of runtime. On average, XLNet only
required 21 ms to run text classification tasks to comple-
tion. BERT, on the other hand, incurred an additional 5%
overhead while attempting to classify the same tasks. This
overhead increased significantly while using the CNN and
RNN models. For instance, the CNN model required almost
27 ms to run to completion. This correlates to 27% and
21% increases in runtime relative to the transformer based
models, XLNet and BERT. In general, the RNN models
proved to be the least efficient, offering the worst execution
times. For example, the GRU model took 33 ms to classify
text, on average. This corresponds to a 56% increase relative
to what we observed with XLNet. Similarly, the LSTM and
standard RNN models experienced comparable overheads.
We observed 33 ms and 31 ms for the LSTM and standard
RNN models, respectively. This is not surprising given that
a typical RNN neuron requires 8x the number of weights
and multiply-accumulate ops of a standard CNN cell [45].

Figure 8 shows the energy consumption of the previ-
ously discussed NLP models. Overall, our energy results
correlate to our runtime findings. We observed that the
transformer based models offered the best energy efficiency
while the RNN models offered the worst. To put things
in perspective, both XLNet and BERT consumed 129 mj
and 136 mj, respectively. This overhead increased to 164
mj while using a CNN. However, significantly more energy
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Fig. 8: Summary of the energy for different NLP models.

was consumed while using a GRU. For instance, the GRU
expended 20% more energy (202 mj) compared to its CNN
counterpart. Although the LSTM and standard RNN models
consumed slightly less energy, they still required 201 mj
and 193 mj, respectively. Overall, we found that in addition
to robustness to AML attacks, XLNet is the most energy
efficient NLP model. This makes XLNet the most suitable
choice for deployment on mobile systems that are often
resource and energy constrained.

Our defense has three main sources of runtime and
energy overhead. These sources correspond to performing
canonical transformation, adversarial detection, and text
classification. Figures 9 and 10 show a breakdown of the
runtime and energy overhead for our design. The first
source of runtime and energy overhead relates to the canoni-
cal transformation phase. This phase is responsible for trans-
forming input data into a standard form that can be con-
sumed by the classification model. We measured runtime
and energy costs of 38 ms and 233 mj. The second source
of overhead relates to the adversarial detection phase. This
phase involves performing spelling and grammar correct-
ness to ensure linguistically sound text data. This phase
marks the biggest source of overhead within our design. We
observed runtime and energy costs of 72 ms and 443 mj. This
is 1.9x the runtime and energy consumption of the canonical
transformation phase. However, despite the high overhead,
this phase is critical to our design since it represents the
core component for defending against AML attacks. The
final source of overhead within our design relates to clas-
sification. On average, this phase required 21 ms and 129
mj to classify 10K sentences from a mix of ransomware
and benign applications while using the XLNet model.
Overall, our end-to-end design required 131 ms and 805 mj
to perform complete detection of ransomware samples. It is
important to note that in most cases, a given user attempting
to launch an app will not result in any of these phases being
executed. The aforementioned overhead is introduced only
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Fig. 9: Runtime breakdown of different NLP phases.
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when a launched app is deemed suspicious.

6.2 Workload Characterization

Computational Workloads. We ran a wide range of ex-
periments that aimed to evaluate the performance impact
of our system on CPU workloads. The CPU workloads
we used are listed in Table 3. Figure 11 summarizes the
overhead of our solution on CPU workloads relative to
an unsecure baseline. In general, most of the CPU-bound
workloads incurred an insignificant amount of overhead
when dispatched on our solution. We found that our system
incurred a negligible overhead that was well under 2%
across most programs with the exception of Integer Math
(IM) and Data Encryption (DE). IM is a workload that
aims to evaluate how fast a CPU can perform arithmetic
operations, such as addition, multiplication, and division.
DE, on the other hand, is a workload that encrypts and
hashes blocks of random data using algorithms, such as
AES, ECDSA, and SHA256. Unlike the other programs, the
IM and DE workloads incurred 2.2% and 3.0% reduction in
performance, respectively. We attribute this reduction to our
design continuously running in the background in order to
monitor service requests issued by a user’s apps.
Memory Workloads. We also ran various workloads that
aimed to evaluate the impact of our solution on the mem-
ory subsystem. The memory workloads we used for this
purpose are listed in Table 3. Figure 12 summarizes the per-
formance overhead of our solution on memory centric work-
loads relative to an unsecure baseline. On average, our so-
lution exhibited a performance impact that was below 3.2%.
The majority of the workloads encountered overheads that
were well below 3% with the exception of the Database
Operations (DOs) workload, which experienced a 9.0%
overhead. We attribute this reduction in performance to the
size of our NLP module. Since our design relies on a pre-
trained model, a substantial amount of memory is needed
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Fig. 11: Performance overhead on CPU workloads.
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Fig. 12: Performance overhead on memory workloads.
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Fig. 13: Performance overhead on I/O workloads.

in order to fit all of the hyperparameters in memory. This
can induce low memory conditions when combined with
memory intensive apps, such as database applications.
I/O Workloads. We also conducted tests that assessed
the performance impact of our design on I/O. The I/O
workloads we used can be found in Table 3. Figure 13
summarizes the performance overhead of our solution on
the I/O subsystem relative to an unsecured baseline. We
observed an average performance decline that was less
than 2.8%. The majority of workloads experienced overhead
that was well below 3%, with the exception of External
Storage Read (ESR) and External Storage Write
(ESW), which had performance losses of 4.8% and 3.3%, re-
spectively. This overhead is only applicable when new apps
are installed and thus evaluated for suspicious behavior.
Overall Performance Impact. Figure 14 illustrates the over-
all performance impact of our design relative to an un-
secured baseline for different subsystems. In general, our
design had the least impact on the CPU subsystem with
an average performance reduction that is under 1.2%. Ad-
ditionally, we observed that our design exhibited a 2.8%
loss in performance across I/O workloads. Similarly, our
design experienced slightly elevated overheads while run-
ning memory bound workloads, averaging a 3.2% drop in
performance. On the other hand, our design had no impact
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Fig. 14: Performance overhead of overall system.

on the performance of graphics workloads. This is expected
since our design does not rely on the device’s GPU for any
of its analysis. Overall, our design experienced a reduction
in performance that was less than 1% when considering
all of the subsystems together. Such negligible overheads
demonstrate the efficiency of our proposed solution.

6.3 Discussion

Our study entailed conducting a comprehensive set of ex-
periments designed to evaluate the ability of our solution
in detecting and recovering from locker ransomware. Our
validation included over 200 benign apps and more than 5K
ransomware samples that spanned 17 ransomware families.
The ransomware families we used are shown in Table 1.

Altogether, our results demonstrate that our design is re-
liable in differentiating between benign and ransomware ac-
tivity. Our solution accurately classified all of the malicious
samples that we ran, including overlay screen and change
pin-code ransomware. Similarly, our design demonstrated
resiliency with regards to misclassifying benign apps. Our
system was able to correctly classify all of the benign apps
without triggering any false positives. During this process,
we observed that less than 1% of the benign apps we tested
requested administrator privileges. This correlates to only
two apps out of a total of 220 applications that requested
such privileges. More specifically, Microsoft Authenticator
[46], a multifactor authentication app that enables users to
securely sign into their accounts was one of the applications
that requested administrator privileges. This app requests
administrator privileges in order to collect GPS data and
enable location based authentication. The second app that
required administrator privileges was Find My Device [47].
Since this is an app that allows users to locate their lost
devices and lock them until they are found, administrator
privileges are requested. Our solution was also able to
correctly classify such apps without yielding any false pos-
itives. The results of the entire experiment are summarized
in Table 5.

Evaluation Results
Total Samples 5,744
Ransomware Samples 5,524
Benign Applications 220
False Positives 0.0%
False Negatives 0.0%

TABLE 5: Summary of false positive and negative results.

Dataset Tesseract-OCR EasyOCR PaddleOCR
Clean ransomware 80.89% 82.95% 99.48%

Low noise ransomware 58.11% 78.29% 99.44%
Medium noise ransomware 49.02% 68.75% 99.21%

High noise ransomware 46.50% 62.34% 98.25%
Captcha version 2 [50] 45.26% 61.77% 85.82%

TABLE 6: Summary of text accuracy for various OCR tools
across different datasets.

In addition, our solution was able to recover from all
of the ransomware samples we tested, including overlay
screen and change pin-code ransomware. We observed that
all of the ransomware samples we encountered requested
administrator privileges upon installation, in order to con-
trol the screen lock action. In the case of overlay screen ran-
somware, all of the samples leveraged the foreground ser-
vice for displaying their ransom notes to the user interface.
For instance, when we tested Svpeng [26], a ransomware
that infiltrates Android smartphones through a fake Adobe
Flash update message, it locked the UI display and popped
up a bogus FBI message that demanded a $200 ransom. In
addition to Svpeng, our system was able to detect malicious
activity from all samples within 131 ms of the screen being
locked. In all cases, our solution successfully restored access
to the infected system within the aforementioned period by
revoking the administrator privileges, deleting the offend-
ing app, and issuing a notification to the user.

We also observed that some ransomware samples
changed the pin code in order to prevent users from access-
ing their devices. For example, we tested Lockerpin [27],
a ransomware that changes the pin of an infected device
followed by a $500 ransom demand. Our design was able
to detect such activity within 131 ms of the screen being
locked. It removed the malicious app and all of its related
files after revoking administrator privileges, reset the screen
lock pin code with a new pin code of 0000, and notified the
user about the app removal and the newly established pin.

We also conducted a series of experiments to evaluate
different OCR tools and their robustness in extracting text
from images produced by locker ransomware. We examined
commonly used open source tools, such as Tesseract-OCR
v5.0.0 [48], EasyOCR v1.7.1 [49], and PaddleOCR v2.8.1
[40]. Our evaluation process began with testing the afore-
mentioned tools on a dataset of 5,524 clean ransomware
images, which were collected from over 17 ransomware
families. To further assess the robustness of these OCR tools
under more challenging conditions, we injected the clean
ransomware dataset with different levels of noise. More
specifically, we applied Gaussian noise, salt-and-pepper
noise, and Gaussian blur to the clean ransomware dataset
at different intensities. This allowed us to produce three
different noise-level datasets: low-level noise (10% inten-
sity), medium-level noise (25% intensity), and high-level
noise (50% intensity). An example of an image obtained
from the Aple ransomware after being exposed to different
noise levels is shown in Figure 15. Moreover, to evaluate the
robustness of the chosen OCR tools when exposed to images
with sophisticated backgrounds, we collected 1,070 complex
background images sourced from CAPTCHA dataset ver-
sion 2 [50]. The findings of these experiments are presented
in Table 6.
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(a) (b) (c) (d)

Fig. 15: Ransom note from the Aples ransomware at different noise levels (a) Clean image with no noise added. (b) Low-
level noise with 10% intensity. (c) Medium-level noise with 25% intensity. (d) High-level noise with 50% intensity.

Table 6 presents a summary of text accuracy for
Tesseract-OCR, EasyOCR, and PaddleOCR across various
datasets, including clean ransomware images, noise-injected
ransomware images at different levels, and CAPTCHA
images with complex backgrounds. The results show that
PaddleOCR consistently outperformed the other two OCR
tools in terms of accuracy, achieving a near-perfect accu-
racy of 99.48% on clean ransomware images. The same
tool also maintained high accuracy even under noisy con-
ditions, achieving a 98.25% accuracy on high-level noise
ransomware images. Additionally, PaddleOCR exhibited
exceptional robustness across a variety of testing scenar-
ios, including complex CAPTCHA images with sophisti-
cated backgrounds, where it achieved an accuracy that
exceeded 85%. Unlike ransomware images, which are de-
liberately crafted to be easily readable to ensure that vic-
tims can clearly understand the demands and pay ran-
soms, CAPTCHA images are intentionally designed to be
challenging to decipher. This approach in turn affects the
victim’s ability to comprehend messages concocted using
this algorithm. Despite these challenges, PaddleOCR proved
to be effective in processing ransomware images. This was
the case even under noisy conditions and deliberately ob-
fuscated CAPTCHA images. These results underscore the
versatility of this tool and its ability to scale to diverse text
recognition tasks.

In contrast, EasyOCR displayed moderate performance,
with an accuracy of 82.95% on clean ransomware images,
62.34% on high-level noise images, and 61.77% accuracy on
CAPTCHA images with complex backgrounds. Tesseract-
OCR, on the other hand, showed lower accuracy rates
across all datasets, with the highest being 80.89% on clean

ransomware images, 46.50% on high-level noise images,
and 45.26% on CAPTCHA images. These findings further
support PaddleOCR’s robustness as an open-source tool for
text extraction purposes. While some commercial OCR tools
[51], such as Google Cloud Vision and AWS Textract, claim
superiority over open-source tools, PaddleOCR remains an
effective option for open-source applications and the devel-
opment of proof-of-concept solutions.

To assess the impact of text extraction tools on the
accuracy of our overall solution, we evaluated our design
using Tesseract-OCR which exhibited the worst perfor-
mance. We then tested our deep learning models against
three datasets with increasing noise levels (low, medium,
and high), in addition to a clean dataset. The results of
this experiment are illustrated in Figure 16. Overall, we
observed that all the models achieved perfect detection on
the clean dataset. However, the effectiveness of the models
varied under different noisy conditions. For instance, RNN-
based models exhibited the most pronounced decline, with
detection rates dropping from 81.0% to 63.0% as noise
increased. CNN experienced a gradual decrease in its de-
tection rates from 87.0% under low noise to 72.5% under
high noise conditions, reflecting moderate noise resilience.
In contrast, transformer-based models like XLNet and BERT
demonstrated superior robustness, maintaining high detec-
tion rates even under high noise conditions. For instance,
XLNet achieved 97.0%, 94.0%, and 86.0% for low, medium,
and high noise levels, respectively. BERT, on the other hand,
achieved 96.0%, 93,0%, and 85.0% when exposed to the same
noise levels. This suggests that transformer-based models
are significantly more effective at handling noisy data com-
pared to CNN and RNN-based models. This enhanced per-
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Fig. 16: Summary of detection rates for deep learning mod-
els using Tesseract-OCR tool across various noise levels.

formance is attributed to the transformer’s ability to capture
bidirectional context and leverage its self-attention mecha-
nism for a deeper understanding of complex relationships
and establishing long-range dependencies between words.
Unlike RNNs, which process text sequentially, and CNNs,
which focus on local patterns, transformers evaluate entire
sentences simultaneously, providing a more comprehensive
and nuanced understanding of the text at hand.

7 RELATED WORK

Ransomware Detection. Several studies [11], [12], [13], [14],
[56], [59], [60], [61] explored various detection techniques
against Android ransomware. For example, [59] relied on UI
analysis on mobile devices to distinguish between benign
and malicious behavior. Other techniques [12], [13], [61]
used disparate forms of static analysis including API calls,
text embedded within APK files, and bytecode present in
DEX files for performing detection. Unfortunately, such
solutions can be thwarted by embedding malicious content
in encrypted form [62]. More work [14], [60] considered
permissions for fingerprinting malicious apps. In general,
the aforementioned methods rely on analyzing high-level
bytecode or permissions files, which are ineffective against
obfuscation techniques that repackage apps with malicious
content directly in native form [15]. Other work [28], [63]
proposed detecting ransomware at the native instruction
level. However, such work lacks that ability to recover
from ransomware attacks. In addition, [11] examined system
resources associated with a given process including CPU,
memory, and I/O activity for detection. However, relying
on usage thresholds have been shown to be unreliable in
predicting malicious activity [64]. Other work [56] proposed
a hybrid approach in which apps are initially assessed stat-
ically by examining embedded text, images, API calls, and
permissions present within APK files. API call sequences
are then monitored at runtime in the event that the static
analysis phase classifies a given app as suspicious. How-
ever, given the vulnerability of static analysis solutions to
different obfuscation techniques [15], [62], the dynamic layer
can be easily rendered ineffective. Overall, all prior work we
are aware of is incapable of recovering mobile systems from
ransomware attacks once a device has been compromised.
Unlike prior work, we present a comprehensive system that
seamlessly safeguards compromised devices from locker
ransomware without the need for manual recovery.
Ransomware Recovery. To complement the deficiencies of
prior work, [16], [17], [18], [20], [65] proposed ransomware

recovery solutions. For example, [16] used out-of-place
writes in solid-state-drives to recover impacted data. An-
other framework [17], proposed the use of a key vault
created to store secret keys generated on a given platform
for later use in order to decrypt maliciously impacted files.
Other work [18] suggested quarantining backup data on
an inaccessible volume to safeguard against backup spoli-
ation attacks. Similarly, [20] suggested the use of backup
techniques as a defense against ransomware attacks. Un-
fortunately, continuously backing up mobile devices is not a
viable option due to the limited amount of accessible storage
and computing resources. Furthermore, such solutions are
mainly concerned with cryptographic ransomware while
our work concentrates on locker ransomware.
Comparison to Existing Defenses. We compared Sniper
against several state-of-the-art ransomware defense sys-
tems. The differences are outlined in Table 7. Overall, the
majority of previous work focused on developing ran-
somware defenses for the Android platform [9], [12], [13],
[14], [56], [58], while a few others [52], [53], [54] targeted
Windows. In general, we find that most prior work [9], [12],
[13], [52], [53] relied on different forms of static analysis,
including the examination of API calls, images, strings
embedded in APK files, and bytecode sequences present
in DEX files, along with the use of supervised machine
learning algorithms for performing detection. However,
these approaches are vulnerable to evasion techniques, such
as, embedding malicious content in encrypted form [62].
Other work [14] has explored combining the use of per-
missions with a customized machine learning algorithm
for fingerprinting and detecting malicious applications. Un-
fortunately, methods that focus on analyzing high-level
bytecode or permissions files are ineffective against obfus-
cation techniques that repackage applications with mali-
cious content embedded directly in native code [15], [66].
Other approaches [54], [58] proposed the use of opcodes for
training CNN-based models to perform detection. However,
these methods are ineffective against obfuscation techniques
[15], [62] that alter opcode sequences without changing
malicious behavior. Other work by [56] employed a hybrid
approach where an app’s embedded text, images, API calls,
and permissions are analyzed statically. API calls are then
monitored in the event that the static analysis phase flags
the app as suspicious. However, due to the susceptibility of
static analysis solutions to various obfuscation techniques
[15], [62], the dynamic layer could easily be rendered ineffec-
tive. Unlike these solutions, our solution combines runtime
monitoring of mobile app activity with an NLP unit that
utilizes transformers for more robust detection.

In general, our evaluation consisted of executing a larger
dataset size of 5,524 locker ransomware samples relative to
other work [9], [12], [13], [14], [52], [53], [54], [56]. With
the exception of work by [58], our dataset size for locker
ransomware is 2× – 15× larger than what was consid-
ered in the other studies. Although work by [58] used
a slightly larger dataset size of 5,852 samples, the study
only covered ransomware samples collected in September
2017. Unlike [58], our work considers samples collected
over several years and across more than 17 ransomware
families. Furthermore, in terms of detection capabilities, we
find that previous work [9], [12], [13], [14], [52], [53], [54],
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TABLE 7: Comparison of our solution (Sniper) with existing ransomware defense systems.

Work Platform Detection Features Dataset Detection of Detection of Detection Rate Device PIN Overhead
Method Size Source Adv. Attacks Unseen Ran. Non-Adv. Adv. Unseen Ran. Recovery Rest. Analysis

[52] Windows State-of-Art API Calls, 582 VirusShare ✗ ✗ 0.963 - - ✗ ✗ ✗Machine Learning Static Code Analysis

[53] Windows State-of-Art API Calls, 360 VirusShare ✗ ✗ 0.971 - - ✗ ✗ ✗Machine Learning Static Code Analysis

[54] Windows Self-Attention Opcodes 1,787 VirusTotal ✗ ✗ 0.875 - - ✗ ✗ ✗CNN model

[12] Android State-of-Art API Calls, 650 VirusTotal ✗ ✓ 1.0 - 0.846 ✗ ✗ ✗NLP models Static Code Analysis

[14] Android Customized API Calls, 500 VirusTotal
✗ ✗ 0.980 - - ✗ ✗ ✗Machine Learning Permissions [12], [55]

[56] Android State-of-Art API Call Sequences, 1,928 [12], [13]
✗ ✗ 0.975 - - ✗ ✗ ✗Machine Learning Static Code Analysis [55], [57]

[9] Android State-of-Art API Calls, 666 VirusTotal ✗ ✗ 1.0 - - ✗ ✗ ✗Machine Learning Static Code Analysis

[13] Android State-of-Art Static Code Analysis 2,045 VirusTotal
✗ ✓ 0.978 - 0.852 ✗ ✗ ✗Machine Learning [12]

[58] Android State-of-Art Opcodes 5,852 Leopard
✗ ✗ 0.968 - - ✗ ✗ ✗CNN models Mobile Inc.

Sniper Android State-of-Art NLP Activity and 5,524 VirusTotal
✓ ✓ 1.0 0.997 0.996 ✓ ✓ ✓Transformer models Service Monitor [15]

[56], [58] did not evaluate the robustness of their solutions
against adversarial attacks. Our solution, on the other hand,
provides a thorough discussion on the impact of adversarial
attacks, underlining the necessity of hardening NLP models
against such attacks. For instance, Sniper stands out in terms
of its ability to detect adversarial attacks, achieving a high
detection rate of 99.7%. It also achieves a perfect detection
rate of 100% against non-adversarial ransomware, with a
high detection rate of 99.6% against unseen ransomware.
While two other solutions [9], [12] also achieved a perfect
detection rate of 100% against non-adversarial ransomware,
and [13] achieved a detection rate above 97%, [9] did not ex-
plicitly evaluate their solution against unseen ransomware.
Additionally, both [12] and [13] solutions experienced a
significant drop in their effectiveness when tested against
unseen ransomware. They merely accomplished detection
rates of 84.6% and 85.2%, respectively.

Another aspect we examined in our comparison relates
to the ability to recover mobile systems and restore pins
from ransomware attacks after a device has been compro-
mised. Overall, we find that none of the other defenses listed
in Table 7 demonstrated the capability to recover mobile
systems and restore pins after being compromised. Our
solution demonstrates its capability to seamlessly recover
mobile systems and restore pins of compromised devices
without manual intervention. Our solution was able to
successfully achieve this across 5,524 ransomware samples
obtained from more than 17 families. Furthermore, we find
that all the defenses listed in Table 7 did not explicitly
evaluate the performance overhead of their solutions. Our
solution, on the other hand, goes beyond prior work by
providing a thorough analysis of performance overhead,
including runtime, energy consumption, and the impact on
CPU, memory, and I/O while running a mix of standard
mobile benchmarks. Our evaluation demonstrated that our
proof-of-concept implementation incurs a minimal perfor-
mance overhead of less than 1% when considering all
subsystems together. Such negligible overheads underscore
the efficiency of our solution in defending against locker
ransomware attacks.

8 CONCLUSION

In this study, we propose, Sniper, a novel runtime defense
that safeguards mobile devices from locker ransomware. We

combine a lightweight NLP module that efficiently detects
ransom notes with a system that dynamically tracks runtime
app behavior. We evaluate the robustness of our solution
against more than 5K ransomware samples. Finally, we
show that our solution incurs minimal performance impact
while running a mix of mobile benchmark workloads.
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