
1

Seamlessly Safeguarding Data Against
Ransomware Attacks

Abdulrahman Abu Elkhail, Member, IEEE , Nada Lachtar, Member, IEEE , Duha Ibdah, Member, IEEE ,
Rustam Aslam, Hamza Khan, Anys Bacha Member, IEEE , and Hafiz Malik, Member, IEEE

Abstract—Encryption has become an indispensable technology for preserving confidentiality. Unfortunately, cybercriminals have
re-purposed this technology to deny users access to their data. This trend has sparked an onslaught of ransomware attacks, that
resulted in several victims being extorted to pay ransoms in return for restoring their maliciously encrypted data. In response to these
challenges, we propose a novel runtime solution that seamlessly defends against cryptographic ransomware. A key observation made
by this work is that maliciously encrypted data is initially buffered in the OS’s page cache before it is flushed to the underlying storage
device. Based on this observation, we develop a solution that efficiently manages data synchronization between the memory and
storage subsystems to prevent maliciously encrypted data from being permanently committed to the underlying storage. We
extensively validate the robustness of this approach against more than one thousand ransomware samples and show that our design
reliably restores all encrypted files. Furthermore, our solution is resilient to ransomware that employ techniques including master boot
record infection and multi-threaded attacks. Finally, an evaluation of our proof-of-concept implementation shows minimal performance
impact while running a mix of compute and I/O bound applications.

Index Terms—Ransomware, malware, data recovery, encryption, system security, intrusion detection system.

✦

1 INTRODUCTION

Our daily dependence on information requires protection.
This necessary protection has made data encryption an in-
dispensable technology for preserving the confidentiality of
today’s digital content. Unfortunately, cybercriminals have
discovered ways to re-purpose this technology and deny
users access to their data in return for ransom. This trend
has sparked an onslaught of ransomware attacks in recent
years, resulting in users, businesses, and governments being
extorted to pay ransoms in return for restoring their mali-
ciously encrypted data.

According to the U.S. Department of Homeland Security,
ransomware represents the fastest growing malware threat
to individuals and organizations [53]. Steve Morgan, the
founder of Cybersecurity Ventures, painted a grim picture
after his public announcement that future ransomware at-
tacks are slated to impact systems every two seconds [11].
To this end, a wide range of business segments incurred
significant damages as a result of ransomware, costing the
pharmaceutical, shipping services, and chip manufacturing
industries over $850 million, $400 million, and $250 million,
respectively [12], [47]. Recently, the energy sector has fallen
prey to such attacks after a major U.S. fuel pipeline was
taken down, prompting the company to make an imme-
diate ransom payment of $5 million in order to regain
access to their encrypted data [48]. Local governments have
also fallen victim to similar attacks, adding to ransomware
woes, including the City of Baltimore that has spent over
$18 million to date in order to recover from ransomware
that crippled various municipal operations [52]. Although

The authors are with the University of Michigan, Dearborn, MI, 48128.
This work was supported in part by the National Science Foundation under
grant CNS-1947580.

the cost of ransomware attacks in 2021 has already been
estimated to be $20 billion, future damages are projected
to reach $265 billion over the next decade [36]. This trend
makes it imperative to explore solutions that can seamlessly
recover from such attacks.

In response to these challenges, researchers have pro-
posed several defenses to safeguard systems against ran-
somware attacks that aim to maliciously encrypt user data
[8], [10], [16], [18], [19], [21], [26], [44]. A large portion of
this research focused on the detection of such malware.
For example, Kharraz et al. [21] employed a temporary
environment designed to screen user programs. Other so-
lutions [18], [19], [44] proposed monitoring system param-
eters, such as API calls, registry key operations, and file
type changes as features for detecting ransomware activity.
However, the response time of such solutions, from data
collection to detection, often results in partially encrypted
filesystems, leaving victims faced with ransom payment as
the only viable option.

The shortcomings of the aforementioned work prompted
the research community to investigate solutions that can
recover from cryptographic ransomware [10], [16], [26].
Huang et al. [16] explored re-purposing out-of-place writes
that are considered intrinsic to flash drives to retain tran-
sient information that contain the original plaintext data.
Unfortunately, ransomware can overwrite such transient
data by duplicating previously encrypted data already
present on the drive. Furthermore, the solution is limited to
solid state drives that employ flash technology. Other work
[26] proposed the use of function hooking to collect crypto-
graphic keys generated by the OS and saving them to a key
escrow. Such keys are retrieved in the event of a ransomware
attack to decrypt any impacted files. However, in addition
to the potential confidentiality violations this solution intro-

https://orcid.org/0000-0001-6711-1280

duces, ransomware can bypass this defense by using their
own crypto libraries over OS hosted services. In general,
recovery solutions such as [16], [26] require manual user
intervention where victims can experience long delays when
restoring compromised data. Similarly, recovery solutions
that employ backups [10] tend to incur non-trivial amounts
of performance overhead. Reclaiming compute resources in
cloud-based environments where performance overheads
are closely monitored to guarantee service level agreements,
and user environments where application responsiveness
and energy efficiency are treated as first order constraints
for consumers are major drawbacks of such systems.

This paper proposes a novel runtime solution that au-
tonomously defends against cryptographic ransomware.
Unlike prior work that can leave victims with partially en-
crypted filesystems or costly downtimes that stem from long
data recovery periods, our solution seamlessly preserves
compromised data without having to undergo an explicit
recovery process. A key observation made by this work
is that maliciously encrypted data is initially buffered in
the operating system’s page cache before it is flushed to
the underlying storage device. Based on this observation,
we develop a solution that efficiently manages data syn-
chronization between the memory and storage subsystems
to prevent maliciously encrypted data from being perma-
nently committed to the underlying storage. We extensively
validate the robustness of this approach against more than
one thousand recently released samples that span 18 ran-
somware families. We show that our design reliably restores
all encrypted files initiated by the samples we tested. Fur-
thermore, our solution is resilient to ransomware that em-
ploy techniques including master boot record infection [17]
and multi-threaded attacks [31]. We demonstrate that our
proof-of-concept implementation incurs negligible overhead
while running a diverse set of realistic workloads commonly
used for measuring performance. Evaluation using a range
of benchmarks that include: PARSEC [6], SPLASH-3 [42],
Flexible I/O [2], and Filebench [51], show an average perfor-
mance degradation that is less than 2% across both compute
and I/O bound workloads.

Overall, this paper makes the following contributions:
• Presents a novel defense that safeguards data against

cryptographic ransomware.
• Unlike prior work that leaves filesystems partially

encrypted or requires delays for recovering data, our
solution dynamically preserves user data without ad-
ditional backups or manual intervention.

• Makes the observation that page caches that are com-
monly employed by operating systems to buffer I/O
data can be harnessed for reliably preserving storage
devices against ransomware attacks.

• Proposes an efficient end-to-end runtime system that
incurs minimal overhead across a diverse set of re-
alistic workloads in the form of micro and macro
benchmarks.

• Extensively tests the robustness of our solution
against more than one thousand recently released
ransomware samples and demonstrates that our work
reliably restores all encrypted files while tolerating
malicious techniques such as master boot record in-
fection and multi-threaded attacks.

The rest of this paper is organized as follows: Section
2 presents background information. Section 3 discusses the
threat model. Section 4 describes the design of the proposed
system. Section 5 presents the methodology and experimen-
tal framework used in this work. Section 6 discusses the
results of our evaluation. Section 8 details related work; and
Section 9 concludes.

2 BACKGROUND AND MOTIVATION

2.1 The Page Cache
Advances in process technology fueled by Moore’s law
have made significant strides in enabling larger memory
devices in today’s computer systems. However, despite such
advances, designers still need to balance between the use
of low latency technology, storage capacity, and cost as
part of producing affordable, yet high performing computer
systems. This goal often necessitates designers to construct
a hierarchy of memory devices from an eclectic mix of
technologies that possess different speed and capacity char-
acteristics. These devices are often interlinked with one
another through caches.

Caches are designed to retain copies of fetched data
obtained from lower levels of the memory hierarchy under
the premise that recently used data will likely be re-used in
the near future. This allows upstream levels of the memory
hierarchy to minimize access to downstream devices that are
considered slow. To this end, virtually all modern operating
systems rely on caching disk data into main memory as a
way of improving performance. This is primarily driven by
the fact that accessing main memory is several orders of
magnitude faster than accessing a disk drive (nanoseconds
vs. milliseconds) [32].

Page caches consist of physical blocks of data that are
fetched from non-volatile storage media (backing store)
such as magnetic disks and solid state drives. Whenever
a process issues a read() system call, the kernel searches
its page cache for the data, if found, the present data is used
to service the calling process. However, in the event that the
data is not found within the cache, an I/O transaction is
issued to the backing store to obtain the requested blocks.
Once fetched, these blocks are populated as pages within
the cache in order to promote isolation between any active
processes through the use of virtual memory. Populating the
cache with this data obviates the need for making future I/O
requests to the backing store for subsequent transactions to
the same data.
Write Caching. In addition to servicing read requests, page
caches must efficiently handle write transactions without
invalidating present pages every time data is modified. In
order to address this issue, page caches often use a write-
back policy for synchronizing data to the backing store. In
other words, the backing store is not immediately updated.
Instead, modified pages are marked dirty and synchronized
periodically to make the corresponding data in the backing
store up to date with the version present in the page cache.
Operating systems often dedicate one or more threads
for systematically scanning dirty pages and synchronizing
them with the backing store.
Cache Eviction. Main memory is a valuable resource that
running applications often contend over. As a result, the

2

page cache must dynamically adapt its footprint to make
room for incoming data when new entries are no longer
available or when the available memory of the overall sys-
tem is low. In order to achieve this, page caches implement
a cache eviction policy that determines which pages must
be removed from the cache. As a first step, OS’s target clean
pages for eviction. However, if more memory needs to be
freed, the operating system creates more clean pages by
writing dirty pages back to the disk then evicting them from
the cache. The OS chooses pages that are the least likely to
be used in the future. For this OS’s often use a least recently
used approach where pages are evicted according to their
timestamp.

2.2 Measuring Randomness

Cryptographically strong algorithms aim to promote two
fundamental properties: confusion and diffusion. Confusion
relates to an algorithm’s ability to obscure the relationship
between a cryptographic key κ and the ciphertext C it
produces [39]. Diffusion, on the other hand, focuses on ob-
scuring the statistical properties of the plaintext message M,
making the produced ciphertext C appear random relative
to its original data M. The aforementioned property can
also be harnessed to infer the presence of ciphertext C within
a stream of data. In other words, the amount of randomness
present in a given bytestream can serve as an indicator for
distinguishing plaintext from encrypted data.

Various methods have been proposed for assessing ran-
domness [5]. A commonly used algorithm for quantifying
the amount of randomness present in a block of data is the
information entropy test. A metric originally introduced by
the father of information theory, Claude Shannon, entropy
is concerned with measuring the degree of uncertainty in
a set of bytes. As such, digital content that undergoes
encryption (ciphertext) tends to exhibit consistently high
levels of entropy. Our study makes use of this metric for
detecting encryption activity initiated by ransomware which
is described in equation (1). In this equation, p(bi) denotes
the probability of byte value bi occurring in a given block
of data M consisting of n bytes. This metric yields values
H(B) ∈ [0, 8], with 8 corresponding to a stream of data
that has a perfectly even distribution of byte values. Since
bytes within a ciphertext should have a uniform probability
of occurring, encrypted data tends to approach the upper
bound of this range.

H(B) = −
n−1∑
i=0

p(bi) log2 p(bi) (1)

In order to evaluate the suitability of using entropy as
a metric for classifying ransomware, we conducted a series
of experiments that measured the entropy of data written
to the disk while executing different programs. To this
end, we first launched WannaCry, a ransomware program
responsible for $4 billion in damages to a wide range of
industries after maliciously encrypting data on more than
230K computers [20]. We executed a sample of the afore-
mentioned ransomware and monitored its disk activity over
a period of one minute. We also examined the disk activity
associated with two other benign applications over the same

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

W
ri
te

 E
n
tr

o
p
y

Time (s)

WannaCry Angry Birds Thunderbird

Fig. 1: Entropy of data written to storage as a function of
time for WannaCry ransomware, Angry Birds, and Thun-
derbird.

period. We ran Angry Birds, a popular gaming application,
and Thunderbird, another popular email client. The results
of this experiment are illustrated in Figure 1.

We observe that on an x86 platform equipped with four
CPU cores, 8 GB of memory, and 1 TB of storage, an average
entropy of 7.4 was recorded while monitoring the write
transactions WannaCry issued to the disk. We find that this
rate is sustained over the entire one minute execution win-
dow. The lowest entropy value that we recorded during this
one minute period was 7.3. We observe a different trend, on
the other hand, while running the gaming application, An-
gry Birds. This application averaged an entropy value of 4.6.
Furthermore, the entropy never exceeded 5.2 throughout the
execution phase while actively playing games through this
program. We observe a similar trend while interacting with
the email client, Thunderbird. This application exhibited an
even lower average of 3.8 throughout its execution. Similar
to Angry Birds, the entropy value never peaked beyond 5.2.
This data illustrates the potential of this metric in distin-
guishing between ransomware and benign applications. We
discuss more extensive results of this metric in section 6.

3 THREAT MODEL

Our design aims to safeguard computer systems against
cryptographic ransomware that is crafted to maliciously
encrypt data present on a victim’s filesystem. To this end, we
consider malware empowered with capabilities beyond tra-
ditional ransomware applications. Such capabilities include
the ability to infect the master boot record (MBR), as well
as, perform concurrent execution through multi-threading.
To this end, we assume an attacker can deploy ransomware
that belongs to any of the following categories:

• Standard Ransomware. Attackers launch ransomware
on a victim’s platform, typically by leveraging social
engineering techniques such as phishing. The malware
is assumed to have basic ransomware capabilities in-
cluding the ability to scan a filesystem and encrypt its
data through a cryptographically strong algorithm.

• MBR Infecting Ransomware. Similar to standard
cryptographic ransomware that can scan and encrypt
data on a filesystem, this form of malware also has
the ability to infect the master boot record, prevent the
OS from booting, and redirect the boot process to a
malicious bootloader that locks the victim out of the
system [27].

3

• Multi-threaded Ransomware. Such ransomware har-
nesses the power of multi-core processing units com-
monly found in modern CPUs and other features
such as hyper-threading (HT). Attackers can leverage
this technology for distributing ransomware activity
across multiple cores to evade detection, as well as,
speed up execution in order to outpace any preven-
tative response that a victim or system administrator
may initiate [31], [38].

In addition to the above, we assume ransomware can
encrypt user data by directly overwriting existing files using
in-place writes or by creating encrypted copies of existing
files through out-of-place writes. We also assume that ma-
liciously encrypted copies of the user data can be followed
by the deletion of the associated original files. Our design
also assumes that ransomware can perform data encryption
using any cryptographic algorithm that is either directly
embedded within the malware or available through crypto
services that are provided by the OS. For instance, most ran-
somware employ the Advanced Encryption Standard (AES)
algorithm for encrypting user data. However, we assume
an attacker can employ other encryption algorithms beyond
AES including Rivest-Shamir Adleman (RSA), Elliptic-curve
cryptography (ECC), and Rivest Cipher 4 (RC4). Further-
more, our solution is designed to restore encrypted files irre-
spective of the underlying storage technology. As such, our
work is able to safeguard data present on a variety of storage
media including solid-state drives and magnetic spin disks.
Finally, we make the assumption that the OS is trusted and
free from any privilege escalations. Otherwise, we argue
that any in-host defense would be defeated including anti-
malware solutions. As such, we assume that ransomware is
executed in user-mode.

4 DESIGN AND IMPLEMENTATION

We present a new runtime system that dynamically defends
against the effects of cryptographic ransomware. A key
approach to our design is that maliciously encrypted data
is initially buffered in the operating system’s page cache
before it is flushed to the underlying storage device. Starting
from this observation, we propose an end-to-end solution
that efficiently manages data synchronization between the
memory and storage subsystems to prevent maliciously
encrypted data from being permanently committed to the
underlying hard drive. To support this approach, we im-
plement our solution within the operating system through
modifications to the system call interface, scheduler, and
page cache.

4.1 System Call Interface

Our solution is designed to track I/O transactions that
could result in the malicious modification of files present
on the system and prevent them from reaching the backing
store. To this end, we augment the system call interface to
monitor socket(), write(), and delete() operations
issued from user space.
Network Socket Requests. All user space processes are
initially treated as benign until they are determined oth-
erwise, based on their system call activity. An important

characteristic of cryptographic ransomware is that it com-
municates with a command and control (C&C) server in
order to exchange the key it will consume for encrypting
the victim’s data [7]. This encryption key is used later by the
C&C server to demand a ransom. As such, our design tracks
processes that attempt to communicate over the network.
Whenever a process issues a request to the kernel to create
a network socket via the socket_create() system call,
our solution updates a tgid_ransom_t data structure that
we associate with the requesting process. This structure is
shown in Listing 1. More specifically, the tgid_ransom_t
of the requesting process is updated to reflect that a socket is
being created using the socket_created field. Monitoring
the socket_create() system call, allows us to flag ran-
somware that attempts to communicate with a C&C server
over TCP and UDP connections.
Write Requests. Whenever a process issues a write request
to the kernel via the write() system call, our solution
computes the entropy of the data that is to be written as
a first step. Further actions are then taken based on the
outcome of this computation. In the event that the entropy
of the computed data exceeds a programmable thresh-
old, the system proceeds to updating the tgid_ransom_t
data structure (Listing 1) associated with the requesting
process. At this point, the tgid_ransom_t of the re-
questing process is updated to reflect the total number of
bytes that have been written using the written_bytes
field. Similarly, we update the information corresponding
to the cumulative entropy of the observed data using the
cumulative_entropy field. The cumulative_entropy
and written_bytes fields are consumed later by the
scheduler to compute the overall average entropy exhibited
by the given process over a predefined execution period.

struct tgid_ransom_t {
int periodic_cpu_time;
int cumulative_entropy;
int written_bytes;
int socket_created;
int delete_requested;
int tcount;

};

Listing 1: Data Structure for tracking a program’s detection
features.

In addition to computing the entropy, our design also
tracks the files a given process has modified through write
transactions. We accomplish this through the use of a radix
tree. We choose this type of data structure in our design pri-
marily because of its fast access time and ability to efficiently
search data without the complexity of having to maintain
a balanced tree. We create a write-radix-tree for each
running process. Every time a process initiates high entropy
writes to a file, an entry that points to the corresponding
file’s data structure is added to the tree.

In addition to tracking the affected files, we augment
each entry within the tree with tags that denote specific
actions. These actions are executed by the system anytime a
tagged file is scheduled for synchronization to the backing
store. To this end, write transactions that exhibit high en-
tropy will result in the DELAY_SYNC tag being set. This tag
informs the rest of the I/O subsystem to delay synchroniz-

4

Update write-radix-tree Update DELAY_SYNC

Height = 1

File #
Memory map

Process 1 0 0 1
DD

List of Files File Identifier

 1 0
DSDD

 0

Low Entropy Write

High Entropy Write

Height = 0

Root

Node 1

Fl
ag

s

File #Root

Low Entropy Write

File
 ID

...

0
DS

1

W
r
i
t
e
(
)

DISCARD_DATADELAY_SYNC DDDS

System Call Interface

 01 0 0
DD FlagsDS

File
 ID Flags

 0

Flags

High Entropy Write

DDDS

(a) Write

Height = 2

Update delete-radix-tree

DS

DD

Node 1

Fl
ag

s

File #

01
DS

DISCARD_DATADELAY_SYNC

System Call Interface
File #

Memory map

 01 0 0
DDDS

Process

 01 1 0
DDDS

D
e
l
e
t
e
(
)

List of Files File Identifier Update DELAY_SYNC

File
 ID

...

DDDS

Root

DD

Node 2

Fl
ag

s

File #

Flags 01
DS

Flags

(b) Delete

Fig. 2: Overview of the system call interface and how different system calls update the tags of their radix trees.

ing the marked file to the disk until further assessment is
made about its corresponding process. In other words, the
I/O activity issued to this file is still under evaluation by the
defense system and could correlate to ransomware activity.
An example that details this process is shown in Figure 2(a).
Delete Requests. Our solution enables the tracking of delete
requests made by a running process. This step is neces-
sary because not all ransomware perform in-place writes
for encrypting user files. Most ransomware families create
encrypted copies of the victim’s files instead. Once such
copies have been produced, the ransomware proceeds to
deleting the victim’s original data (files in plaintext). As
such, our design tracks processes that perform delete op-
erations. Whenever a process issues a delete request to
the kernel via the delete() system call, our solution up-
dates a delete_requested field within the corresponding
tgid_ransom_t data structure to reflect this behavior.

Our design aims to prevent the deletion of files in
the event that the corresponding process is classified as
ransomware. Therefore, in addition to postponing written
data, our solution delays the deletion of files until a de-
cision is made about the associated process. Since delete
is an operation that is not frequently used by users, we
add all the delete requests a given process initiates to a
dedicated delete-radix-tree. Similar to the way our
design handles write operations, every time a delete request
is made by the running process, an entry that points to
the corresponding file’s data structure is added to the tree.
Furthermore, all the delete requests that are recorded in
the radix tree are marked with the DELAY_SYNC tag. This
informs the system to not permanently delete the file from
the backing store until further analysis is made. An example
of this process is shown in Figure 2(b).

4.2 OS Scheduler

The OS scheduler represents a key component of our detec-
tion system. Its primary role entails periodically evaluating
active processes on the system and classifying them as either
benign, suspicious, or malicious. To this end, our sched-
uler relies on multiple features for classifying workloads.
Such features include network requests, delete operations,
and entropy measurements that are tracked by the system
call interface. More specifically, the scheduler examines the
network_created and delete_requested fields asso-
ciated with each process to determine if network commu-
nication has been attempted and if any delete requests

were issued. It also monitors the overall entropy associated
with each process over a programmable execution window
(e.g. 1 second). The scheduler employs this approach in
order to validate that a process has sustained a sufficiently
continuous stream of high entropy transactions before it
considers the associated feature to be set. This method
allows the detection system to mitigate the possibility of
falsely misclassifying applications as a result of short-lived
write transactions that may manifest high entropy levels.

The scheduler carries out a few tasks upon every context
switch. This includes logging the amount of elapsed CPU
time a given process was allocated on the system (using
the periodic_cpu_time field). The scheduler uses this
time to determine how often a process must be evaluated
for its maliciousness. Once a process has executed for a
predetermined period (e.g. 1 second), the scheduler ref-
erences the cumulative_entropy and written_bytes
fields that were previously saved by the system call interface
and computes the average entropy of the write transactions
the process has exhibited. If the computed average exceeds
a predefined threshold, the process is considered to be sus-
picious (potentially malicious). Therefore, as an additional
step, the scheduler checks the process’s socket_created
and delete_requested fields. If any of the aforemen-
tioned flags are set, in addition to the entropy exceeding
a predefined threshold, the process is no longer considered
to be suspicious, and is classified as malicious instead. Oth-
erwise, the execution period (periodic_cpu_time), the
cumulative entropy (cumulative_entropy), and the total
number of written bytes (written_bytes) associated with
the process are reset in preparation for a new evaluation cy-
cle. The socket_created and delete_requested flags,
on the other hand, are considered to be sticky. In other
words, once set, they are not cleared throughout the lifetime
of the process. An overview of this design is shown in Figure
3.
Discarding Malicious I/O Requests. Further action is taken
by the scheduler whenever a process is deemed malicious.
As previously stated, a process is classified as malicious if
the entropy of its written data has exceeded a predefined
threshold and at least one additional feature has been de-
tected (network or file deletion request). Once a process is
classified as malicious, the scheduler updates the tags of
all previously marked files that are present in the process’s
radix trees. For instance, files that have been recorded in the
write-radix-tree and delete-radix-tree structures
are updated to include a DISCARD_DATA tag. Unlike the

5

Files

R
un

ni
ng

 Q
ue

ue

Root

Height = 2

int threshold

…

R
ea

dy
 Q

ue
ue

Context switch

Select New Task

Kill process

Update DISCARD_DATA

Check Threshold

Update Struct

Write Entropy

Root

Height = 1

struct xarray *write-radix-tree

struct xarray *delete-radix-tree

tgid_ransom_t *ransom_ptr

Process

DD

Node 2

Fl
ag

s

File #

1
DS
1

DD

Node 1

Fl
ag

s

File #

1
DS
1

Node 1
File #

Fl
ag

s

1
DS
1

Scheduler

Cache

Delete

Files

P1
P2

Pn

P1
P2

Pn

DISCARD_DATADELAY_SYNC DDDS

delete-radix-tree

write-radix-tree

DD

Fig. 3: Overview of the OS scheduler design.

DELAY_SYNC tag that results in written data being post-
poned for synchronization, the DISCARD_DATA tag informs
the I/O subsystem to discard data. It prompts the page
cache to discard any memory pages that correlate to I/O
data written by the malicious process. It also induces the
I/O subsystem to permanently discard any file deletion
requests. The scheduler concludes by sending an alert to
the user and consequently terminates the corresponding
process. In the event that a process is only deemed suspi-
cious (entropy threshold exceeded, but no other features
detected), an alert is sent to inform the user about the
abnormal activity. In addition, the user is prompted to either
allow the process to continue running and be treated as a
benign workload or terminate its execution and discard any
delayed I/O requests. On the other hand, a process that
is classified as benign (no features detected) results in its
write-radix-tree being deleted. This in turn informs
the page cache, that previously buffered write operations,
can now be synchronized to the backing store. Furthermore,
the design processes all of the previously buffered delete
requests by permanently removing all of the files that
have been tagged within the delete-radix-tree. The
aforementioned tree is also destroyed once all of the delete
requests have been successfully completed.
Detecting Multi-threaded Ransomware. Cybercriminals
are constantly seeking ways to make their attacks more
profitable. With this objective in mind, designing high per-
formance programs that can outpace human response and
evade detection systems is paramount. To this end, sophis-
ticated forms of ransomware that pack multi-threaded sup-
port [9], [31], [38] have recently emerged into the malware
landscape, posing a significant threat to both businesses
and end users alike. Although this approach is typically
aimed at defenses that rely on performance counters, it is

conceivable that an attacker could harness this technique
to evade our detection mechanism. For example, a mali-
cious program could distribute its encryption activity across
multiple threads such that the entropy of data written by
each thread falls below our predefined threshold. To address
such concerns, our system monitors the aggregated entropy
that spans all write operations a given application issues.
We achieve this by associating the tgid_ransom_t data
structure with the program’s main process (parent process)
that each created thread (child process) can share.

The tgid_ransom_t structure shown in Listing 1 is
designed for integration into different operating systems
including popular ones, such as Linux and Windows. For
instance, in Linux, threads that are spawned from a sin-
gle program are assigned a common group ID (tgid).
Our design uses this field as the basis for sharing the
tgid_ransom_t structure across all downstream threads
that share the same tgid. Since threads on this platform
are also treated as processes, we augment Linux’s standard
process structure, task_struct, with an additional pointer
(ransom_ptr). The scheduler and other parts of our de-
sign use this pointer for accessing tgid_ransom_t. Ad-
ditionally, to ensure proper sharing of the tgid_ransom_t
structure across the different threads associated with a given
program, we modify the kernel’s clone() system call. This
enables our design to examine the corresponding tid of
every newly created process before it is activated. If the
new process shares the same tgid as its parent, then we
simply set the ransom_ptr field in the task_struct to
point to the parent’s existing tgid_ransom_t structure.
On the other hand, if the parent and the child have different
tgid values, then a new tgid_ransom_t is allocated and
initialized. Once a tgid_ransom_t structure has been allo-
cated, all subsequent accesses to this resource are arbitrated
for atomicity in order to prevent possible race conditions.
Finally, our design keeps track of the number of threads
that are referencing the tgid_ransom_t structure through
a tcount field. This field is used to determine when the
associated tgid_ransom_t structure for a given program
needs to be deallocated. As such, whenever tcount is
reduced to zero, the structure is deallocated implying that
all of the program’s threads have been terminated.

The Windows operating system uses a simpler sup-
port model for managing multi-threaded programs. On
this platform, a multi-threaded application is conveniently
represented by a single process by default. Windows uses
a so-called Executive Process (EPROCESS data structure) for
tracking such programs. Any subsequent threads that are
instantiated from the executive process are allocated their
own data structures (an ETHREAD structure for each thread).
Although each ETHREAD is considered to be a separate
structure, they are linked back to the program’s executive
process (EPROCESS). To this end, our design for Windows
platforms entails adding the ransom_ptr field to the
EPROCESS, which by default, is visible to all the associated
ETHREADs. Similar to the Linux design, the ransom_ptr
field would point to the same tgid_ransom_t shown
in Listing 1. As such, whenever a given thread is dis-
patched, the Windows scheduler would simply examine the
ETHREAD structure, point back to the ransom_ptr in the
corresponding EPROCESS, and take the necessary action.

6

4.3 The Page Cache Subsystem
The page cache module is responsible for preventing ma-
licious data from reaching the backing store. As a result,
before this subsystem designates any of its pages for syn-
chronization or eviction from its cache, it first determines if
the associated file has been tagged. This prompts the system
to look up the file and owning process of each memory page
that is under consideration for commitment to the backing
store. More specifically, the design uses a (file, process) tuple
to determine if the file exists within the corresponding radix
tree. If that file is found within the process’s radix tree, then
we proceed to examining the associated tags. On the other
hand, if the file doesn’t exist, we allow the respective pages
to be committed.

In most cases, files that are written by user appli-
cations will not be recorded in the write-radix-tree
since the entropy of such data is typically low. Under
such circumstances, the ransom_ptr within the process’s
tgid_ransom_t would simply point to NULL implying
that no radix tree exists. On the other hand, a file that
exists within the radix tree and has the DELAY_SYNC tag
set, as a result of write or delete operations, would result
in the associated page to remain in the page cache until the
scheduler classifies the associated process and updates the
corresponding radix tree. In the event that the scheduler
declares a process as malicious, the DISCARD_DATA tag
would be set. This in turn results in the associated page
being freed and its entry removed from the cache without
being committed to the backing store. In other words, the
underlying file will retain its original content on the backing
store and ignore any write or delete transactions initiated by
ransomware. Therefore, the next time the file is opened by
the user, the original data will be seamlessly mapped into
memory without any impact.

Unfortunately, some ransomware families [27] can have
adverse consequences on computer systems that are well
beyond encrypting user files. Such behavior includes de-
structively overwriting the master boot record (MBR) in
order to redirect the boot process to a malicious boot loader.
This type of ransomware is difficult to detect because it
postpones its encryption activity until the system is re-
booted, giving full control to the malware. In other words,
the encryption process does not start until the attacker’s
boot loader has overtaken the system. Since in this case,
no high entropy would be detected due to the lack of
encryption activity while the OS is running, our design
additionally monitors write transactions that could impact
the MBR. In most cases, the MBR, which corresponds to
the first sector of a given storage device, is not overwritten
by runtime applications. Instead, writes to this sector are
typically restricted to OS installation activities. To address
this issue, our design denies any access to the MBR while
the OS is actively running. To achieve this, our solution
examines the addresses of all blocks that are destined for
storage devices. Any writes to the first sector of the device
are denied followed by an alert being sent to the end user.

5 METHODOLOGY

We conducted ransomware experiments using the Cuckoo
sandbox [43]. We chose this framework due to the various

services it offers for testing malware, managing virtual ma-
chines, and performing analysis. We configured Cuckoo to
run with a Windows 7 virtual machine that was launched on
an Ubuntu 16.04 host. The Windows image was preloaded
with commonly used files, such as, PDF documents, Word
documents, Excel spreadsheets, and PowerPoint presenta-
tions, in addition to standard text files. We also provided
regulated Internet access to the virtual machine through a
filtered host-only adapter. This was setup to restrict any
network activity to DNS, IRC, and HTTP traffic only. We
allowed such basic networking activity purely for the pur-
pose of enabling ransomware to communicate with their
respective command and control (C&C) servers in order
to facilitate key exchanges. For some ransomware samples,
the encryption process was dependent on such exchanges
before any malicious activity could be initiated.

We developed a proof of concept of our design using
the Linux v5.10.4 kernel. This kernel was used to run the
Ubuntu 16.04 host which in turn ran the Windows 7 image
coupled with Cuckoo. We evaluated the robustness of our
defense against 18 ransomware families. This resulted in the
execution of 1324 real world samples, that were obtained
from the VirusTotal [1] repository. Our dataset included
both MBR and multi-threaded ransomware. The samples we
used, their families, and respective capabilities are listed in
Table 1. Each one of these samples was executed on the Win-
dows 7 guest using Cuckoo for a minimum of 10 minutes or
until files were encrypted. The Windows image was rolled
back to a clean state every time a ransomware sample was
executed. This was done in order to mitigate any lingering
effects previously executed malware may have on future
runs.

In addition to ransomware samples from VirusTotal, we
executed 261 benign applications to evaluate the suitability
of our design against false positives where each application
was also executed for a period of 10 minutes. More specif-
ically, we considered applications that spanned different
categories including news, education, web browsing, social,
communication, productivity, travel and local, health and
fitness, and entertainment. This included the Office suite,
video editing tools, compression utilities, and cryptographic
applications to name a few. The aforementioned categories
and their corresponding applications are summarized in
Table 7 which can be found in the Appendix.

In order to evaluate the robustness of our solution
against false positives, we downloaded and installed com-
monly used applications for each category including pro-
ductivity programs such as Office suite, Android Studio,
and Eclipse that were configured to run on Linux. Each
application was used interactively for at least 10 minutes
while tracking the kernel alert messages. In addition, we
launched common web services such as Google Maps, and
TripAdvisor through Google Chrome. Furthermore, in order
to evaluate our solution against applications that share
ransomware-like features, we executed a variety of benign
applications that span audio and video editing tools, com-
pression utilities, and cryptographic applications.

We evaluated the overhead of our proof-of-concept using
an HP laptop that was equipped with an 8 core Intel Core i7
2670QM processor, 16 GB of memory, and 1 TB of storage.
We ran a diverse set of realistic workloads commonly used

7

for measuring performance directly on the Linux host. This
entailed using a range of multi-threaded workloads from
PARSEC [6] and SPLASH-3 [42] in order to characterize
the design’s sensitivity to compute-bound workloads. We
also examined the overhead of our prototype in the context
of I/O bound workloads through the Flexible I/O [2] and
Filebench [51] benchmarks. This enabled us to systemati-
cally assess the performance overhead of our I/O subsystem
when exposed to a large amount of sequential and random
read/write operations on files and directories in the form
of micro benchmarks. We also ran full fledged I/O centric
applications (macro benchmarks) including various servers.
The aforementioned benchmarks are listed in Table 2. The
configuration of the respective I/O benchmarks is outlined
in Tables 3 and 4.

6 EVALUATION

6.1 Ransomware Analysis
6.1.1 Feature Set Characterization
Our system relies on measuring the amount of entropy
inherent in write operations as a primary detection feature.
To this end, we conducted experiments across several pro-
grams in order to determine a suitable threshold for detect-
ing ransomware activity. In particular, we characterized a
total of 18 ransomware samples that belonged to different
families (one sample from each family). In addition, we
characterized several multi-threaded benchmarks from the
PARSEC 3.0 and SPLASH-3 suites. The entropy of each run-
ning program was measured over a period of one second.
The results of this experiment are illustrated in Figure 4.

On average, we observed a relatively low entropy value
across all benign workloads from the PARSEC and SPLASH-
3 suites. These values ranged from 2.3 in the case of
cholesky, to 4.3 while executing fluidanimate, with an
overall average of 3.5. Furthermore, we found that multi-
threaded programs, despite their low entropy, tended to
issue write transactions that contained higher amounts of
randomness when compared to single-threaded workloads.
For instance, benchmarks from the SPEC2K6 [13] suite
yielded a significantly lower average of 1.4.

On the other hand, we observed a drastic difference
when comparing the aforementioned workloads to ran-
somware programs. The overall average across ransomware
programs from the different families was 7.2. This figure
correlates to a 2x increase relative to what was observed
with benign programs. We found that the entropy of the
tested malware ranged between 7 to 7.6 with ransomware
from the Cerber family having the lowest value. To put
things in perspective, Cerber’s entropy value was 60%
higher than fluidanimate, a workload that had the high-
est entropy amongst all benign applications. Based on such
experiments, we concluded that using an entropy value of
6 represents a reliable threshold for distinguishing between
benign and malicious activity.

In addition to entropy, our system treats network activity
and file deletion requests as additional features for finger-
printing ransomware. Similar to the entropy experiment,
we characterized a total of 18 ransomware samples that
belonged to different families. Each sample was executed
on an instrumented kernel that was designed to record high

entropy writes, network activity, and file deletion requests,
along with their respective timestamps. Overall, we found
that all of the samples attempted to communicate with a
C&C server after being launched on the system irrespective
of whether the encryption key was generated locally or
remotely. For example, although ransomware families, such
as Conti, SporaRansomware, and WannaCry, are designed
to receive their encryption keys from a C&C server, other
families that produce their encryption keys directly on the
victim’s machine, including Cerber, Locky, and TeslaCrypt,
still exchanged data over the network. We believe such
traffic includes sharing the encryption key for data recovery
purposes. In terms of delete requests, we observed that
such operations were promptly issued after every newly
encrypted file was generated. In other words, a file deletion
request was issued to the filesystem immediately after an
encrypted version of the associated file was produced. These
results underscore the practicality of leveraging the afore-
mentioned features for fingerprinting ransomware activity
in addition to entropy measurements.

6.1.2 Detection and Filesystem Recovery
Our evaluation encompassed carrying out a large scale
test effort in order to properly validate the ability of our
design to detect and recover from ransomware. Our dataset
consisted of more than one thousand ransomware samples
and over 200 benign applications. The ransomware families
and their respective families are shown in Table 1.

Overall, our results show that our solution is effective
in dynamically distinguishing between ransomware and
benign activity. Our design was able to successfully de-
tect all the malicious samples that we executed, including
multi-threaded and MBR-based ransomware. Similarly, our
solution demonstrated robustness against misclassifying be-
nign applications as ransomware. Our solution was able
to correctly classify all standard benign workloads without
producing any false positives. For instance, programs such
as Office suite, Visual Studio, and the Chrome browser were
classified correctly without yielding any misclassification. In
the case of compression and cryptographic utilities, the user
was prompted to either approve or terminate the program.
The results of this experiment are summarized in Table 5.

Our evaluation of the file recovery process entailed
populating the system under test with several personal
files that conformed to different formats including .pptx,
.docx, and .txt. The filesystem had a total of 2700 files
with different sizes ranging from 1KB to 22MB that were
distributed across three folders: Documents, Downloads,
and Desktop. Each directory contained approximately 2
GB worth of data. We observed that the majority of ran-
somware samples that we launched on the system would
spend their first two minutes setting up their execution
environment while attempting to communicate with a C&C
server. The encryption process usually started immediately
after ransomware had successfully obtained a key from its
corresponding server. In all cases, our solution was able to
detect such activity within one second of the encryption
process. Upon detection, our system would restore all of
the affected files within the aforementioned period, send an
alert to the end user, and terminate the offending process.
In addition, we observed that some ransomware samples

8

Family Samples Algorithm Backup Spoliation MBR Multi-threaded Defeated Discovered Month
7ev3n 9 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-4
Cerber 46 RSA+RC4-256 ✓ ✗ ✓ ✓ 2016-3
Conti 57 RSA+AES-256 ✓ ✗ ✓ ✓ 2019-12
Crypmod 132 RSA+AES-256 ✓ ✗ ✗ ✓ 2018-2
Crypren 5 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-1
CryptoWall 158 RSA+AES-256 ✓ ✗ ✗ ✓ 2013-12
DeriaLock 2 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-12
Dharma 3 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-1
InfinityCrypt 2 RSA+AES-256 ✗ ✗ ✗ ✓ 2017-9
Locky 351 RSA+AES-128 ✓ ✗ ✗ ✓ 2016-1
Maktub 3 RSA+AES-256 ✓ ✗ ✗ ✓ 2016-3
Rapid 4 RSA+AES-256 ✗ ✗ ✗ ✓ 2017-12
Petya 4 RSA+AES-256 ✓ ✓ ✗ ✓ 2016-3
RedEye 2 RSA+AES-256 ✓ ✓ ✗ ✓ 2018-6
Shade 13 RSA+AES-256 ✓ ✗ ✗ ✓ 2014-12
SporaRansomware 6 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-1
TeslaCrypt 501 ECC+AES-256 ✓ ✗ ✗ ✓ 2016-1
WannaCry 26 RSA+AES-256 ✓ ✗ ✗ ✓ 2017-5
Total Samples 1324

TABLE 1: Summary of ransomware families and their capabilities.

 0

 1

 2

 3

 4

 5

 6

 7

 8

B
lackscholes

B
odytrack

C
anneal

D
edup

Facesim
Ferret
Fluidanim

ate

Freqm
ine

R
aytrace

S
tream

cluster

S
w
aptions

V
ips

X
264

B
arnes

C
holesky

Fft
Fm

m
Lu O

cean
R
adiosity

R
adix

V
olrend

W
ater-nsquared

W
ater-spatial

7ev3n
C
erber

C
onti

C
rypm

od
C
rypren

C
ryptoW

all

D
eriaLock

D
harm

a
InfinityC

rypt

Locky
M

aktub
R
apid

P
etya

R
edE

ye
S
hade

S
poraR

ansom
w
are

TeslaC
rypt

W
annaC

ry
W

ri
te

 E
n

tr
o

p
y

Benign Ransomware Threshold

Fig. 4: A comparison of write entropy measurements across PARSEC, SPLASH-3, and ransomware families over a one
second execution period.

Suite Benchmark

PARSEC3
blackscholes, bodytrack, canneal,
dedup, facesim, ferret, freqmine, fluidanimate,
raytrace, streamcluster, swaptions, vips, x264

SPLASH3 barnes, cholesky, fft, fmm, lu, ocean, radiosity,
radix, volrend, water nsquared, water spatial

Filebench varmail, fileserver, webserver,
(Macro) videoserver, webproxy, mongodb
Filebench openfiles, createfiles, copyfiles, deletefiles,
(Micro) listdirs, makedirs, removedirs

FIO seqread, seqwrite, seqreadwrite,
randomread, randomwrite, randomreadwrite

TABLE 2: Summary of performance benchmarks.

did not perform in-place writes of encrypted data. Instead,
new copies were produced, encrypted, and then renamed to
include a new extension. For instance, ransomware from the
7ev3n family added a .R5A extension while samples from
InfinityCrypty appended a .enc extension. Once the newly
created files have been produced on the system, the original
files would then get deleted. Although our defense would

simply leave the newly created files (with .R5A and .enc
extensions) on the system, any attempt to delete the original
files from the filesystem would be prevented through the
use of a delete-radix-tree.

6.2 Performance Overhead
6.2.1 Compute-bound Workloads
Our runtime system has two main sources of overhead.
The cost of context switching processes, and the cost of re-
source contention that stems from the execution of multiple

Workload Configurations
seqread 4K sequential read, iodepth=1, numjobs=8
seqwrite 4K sequential write, iodepth=1, numjobs=8
seqrw 4K sequential rw (50%) each, iodepth=1, numjobs=8
randomread 4K random read, iodepth=1, numjobs=8
randomwrite 4K random write, iodepth=1, numjobs=8
randomrw 4K random rw (50%) each, iodepth=1, numjobs=8

TABLE 3: Configuration parameters of the FIO workloads.

9

Workload Thread File File R/W Append
Count Count Size Size Size

varmail 8 30K 16KB 1M 16KB
fileserver 8 10K 128KB 1M 16KB
webserver 8 50K 64KB 1M 8KB
videoserver 8 - 64KB 1M -
webproxy 8 30K 16KB 1M 16KB
mongodb 8 10K 128KB 1M 16KB
openfiles 8 50K - 1M -
createfiles 8 30K 16KB 1M -
copyfiles 8 10K 128KB 1M -
deletefiles 8 50K 64KB 1M -
listdirs 8 50K - 1M -
makedirs 8 50K - 1M -
removedirs 8 50K - 1M -

TABLE 4: Configuration of the Filebench workloads.

Evaluation Results
Total Samples 1585
Ransomware Samples 1324
Benign Applications 261
False Positives 0.0%
False Negatives 0.0%

TABLE 5: Summary of false positive and negative results.

threads. To this end, our evaluation focused on the use of
multi-threaded benchmarks in order to accurately measure
the overhead of our design on compute-bound workloads.
The current version of our prototype implementation was
geared towards collecting profiling information for the pur-
pose of this study. Despite this, our solution is considered to
be lightweight and incurs insignificant overhead.

Figure 5 summarizes the performance impact of our
solution on compute-bound benchmarks from PARSEC and
SPLASH-3. On average, we observed a performance re-
duction that was less than 2%. With the exception of a
few programs, most benchmarks experienced an overhead
that was well below this average. An exception to this
trend, however, was Ferret which had an 11% reduction
in performance. We attribute this overhead to the amount
of context switches this process experienced relative to
other workloads. For instance, Ferret had a 2x context
switch rate relative to Radix which had the second highest
overhead. Given that our scheduler requires additional pro-
cessing every time a program is context switched, having a
process undergo excessive context switching will naturally
lead to more overhead over time. Radix, a program that
is designed to sort integers, exhibited similar delays, but to
a lesser extent. Given that these workloads are calibrated
to promote parallelism through multi-threading, we believe
that the threads of these programs contended with one
another over the shared tigd_ransom_t structure which
contributed to an increase in the overall overhead. For
example, we observed a relatively high amount of calls to
locking constructs while executing the Radix workload.

6.2.2 I/O-bound Workloads

We conducted a variety of experiments that were designed
to characterize the performance impact of our solution on
I/O bound workloads. Our test coverage encompassed both
macro and micro benchmarks from the Filebench and FIO
suites. These suites allowed us to adequately exercise the

I/O subsystem and measure its overhead in terms of both
throughput and latency.
I/O Throughput. We first discuss the throughput of our
solution and how it compares to an unsecured baseline
design that uses a stock kernel. The results of this experi-
ment are summarized in Figure 6. We observed that most
of the applications from the Filebench suite experienced a
slight decrease relative to the original design after being
configured with the parameters shown in Table 4. Although
a slight decrease was recorded, the overall impact was
minimal. On average, we observed a 6.4 Mb/s decrease in
throughput across the various applications shown in Figure
6(a) which corresponds to a mere 0.2% reduction in perfor-
mance. Overall, the webserver application experienced the
most impact to throughput. This application observed a 31.6
Mb/s reduction in throughput relative to the baseline which
started out with 1872 Mb/s. The Filserver application, on
the other hand, experienced the second highest decrease af-
ter citing a 10.5 Mb/s reduction in throughput. We attribute
this decrease to having more pages buffered in the page
cache which in turn reduced the number of entries available
for caching new data. This approach created unnecessary
pressure on the overall page cache system which resulted in
pages being evicted more often in order to accommodate
newly fetched data. As a result, less I/O requests could
be serviced out of the page cache and had to incur the
additional penalty of fetching fresh pages from the backing
store.

In addition to executing full fledged applications, we
conducted various experiments that involved the use of
microbenchmarks. We leveraged such benchmarks to exer-
cise different file and metadata operations including open,
copy, and delete, as well as commonly used directory
operations. These are shown in Figure 6(b). In general, we
observed a similar trend while testing the aforementioned
operations. This trend was also seen when our design was
evaluated against a series of sequential and random read-
/write operations. On average, our design observed a 12%
reduction in throughput relative to the baseline with this
reduction ranging between 0.5 Mb/s to 26.6 Mb/s. For the
most part, we found that operations involving write trans-
actions experienced the most reduction. For instance, oper-
ations such as random read and sequential read observed a
mere 0.5 Mb/s and 5.2 Mb/s reduction, respectively. On
the other hand, the remaining transactions that involved
different write operations ranged between 10 Mb/s to 26.6
Mb/s. This is primarily due to the fact that our system call
interface performs additional steps on all write transactions
that include entropy computations and radix tree updates.
The aforementioned throughput results have almost a one-
to-one correlation to data shown in Figure 7. In other words,
similar trends can be derived when looking at this data from
an I/O operations per second (IOPS) perspective.
I/O Latency. In addition to throughput, we evaluated the
amount of latency our design introduces when accessing
a single block of data. The results of this experiment are
summarized in Figure 8. Similar to the previous throughput
and IOPS experiments, we examined the impact of our
design on latency across macro and micro benchmarks.
From a macrobenchmark point of view, we found that
varmail experienced the most overhead. This application

10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

B
lackscholes

B
odytrack

C
anneal

D
edup

Facesim
Ferret
Fluidanim

ate

Freqm
ine

R
aytrace

S
tream

cluster

S
w
aptions

V
ips

X
264

B
arnes

C
holesky

Fft
Fm

m
Lu O

cean
R
adiosity

R
adix

V
olrend

W
ater-nsquared

W
ater-spatial

N
o
rm

a
liz

e
d
 E

x
e
c
.
T

im
e

Baseline Design

Fig. 5: Performance impact of our design on compute-bound
workloads relative to an unsecured baseline.

had a 1.2% increase in latency relative to the baseline design.
Also similar to previously reported throughput results, we
found that operations that involved writing data tended to
exhibit higher latencies. For instance, the latency of write
operations observed increases that ranged between 0.4% to
1.1%. On the other hand, the overhead for read operations
remained between 0.1% and 0.13%.

Overall, our results show that the performance impact
to the I/O subsystem is minimal. Even when considering
various metrics, our overhead remained well below the 1%
mark. Such low overheads underscore the efficiency of our
proposed approach.

7 DISCUSSION AND LIMITATIONS

A primary detection feature that our proof of concept in-
volves relates to measuring the amount of entropy inherent
in write transactions. Although our evaluation shows that
the aforementioned metric is effective in distinguishing
between ransomware and most benign applications, it still
suffers from misclassifying a small set of workloads. For
instance, compressed data tends to exhibit entropy levels
that are comparable to information that undergoes encryp-
tion. A user may also choose to encrypt a set of personal
files on the system which would naturally trigger a false
positive. As such, the entropy metric alone is not sufficient
for differentiating between ransomware and compression
utilities. Consequently, our design harnesses other features
that include the monitoring of network activity and file
deletion requests as a means of reducing the number of
false positives. Our evaluation shows that while considering
the aforementioned supplemental features, our design did
not classify any of the 32 cryptographic and compression
applications listed in Table 7 as malicious. However, as a
conservative measure, we still inform the user when such
utilities are running and present it with the option to ap-
prove or deny their execution. The user can also white-list
such applications, so future runs do not prompt the user for
action.

Multiple studies explored different features that could
also be used for fingerprinting ransomware activity [10],
[21], [22], [35], [44]. Such features include the use of decoy
files [10], [35], the monitoring of directory traversal patterns
[22], file type conversions [44], in addition to entropy lev-
els of written data [21]. However, unlike prior detection
mechanisms that leave filesystems partially encrypted or
require delays for recovering data, our solution dynami-
cally preserves user data without additional backups or

manual intervention. As such, our work complements these
detection-based studies by focusing on the restoration as-
pect of data already impacted by ransomware. Although
our solution accommodates the integration of the afore-
mentioned features, we leverage entropy, network requests,
and delete operations as features for detecting maliciously
encrypted data as part of our proof of concept design. We
believe our end-to-end solution significantly raises the bar
for attackers. For instance, our evaluation demonstrates that
harnessing entropy, network requests, and delete operations
as features resulted in our solution detecting all ransomware
programs within our dataset, which included over one
thousand samples. Most importantly, our design was able
to reliably restore all impacted files while tolerating mali-
cious techniques, such as master boot record infection and
multi-threaded attacks. Furthermore, our proof-of-concept
implementation shows that our solution introduces minimal
performance impact while running a mix of compute and
I/O bound applications.

Despite the robustness of our solution against more than
one thousand ransomware samples, its ability to reliably re-
store impacted files, as well as tolerate malicious techniques,
such as master boot record infection attacks, attackers may
attempt to evade our defense through smart ransomware.
Therefore, to understand the limitations of our solution
in this context, we developed a synthetic workload that
encrypted files in a throttled fashion. We found that our
solution was able to detect throttled write operations that
employed data rates as low as 512 B/s. Although smart
ransomware may attempt to evade our defense by writing
data using rates that are well below 512 B/s, we argue that
ransomware often aims for speed when encrypting files in
order to outpace any human response. For instance, our
experiments show that write transactions issued by ran-
somware sustained data rates that ranged between 41 MB/s
– 147 MB/s. This is 8.4 · 104x – 3 · 105x higher than the rate
our solution was able to detect. To address such throttling
attacks, our defense buffers written data until a minimum
of 512 bytes have been issued, after which the entropy is
computed. Meanwhile, the process is periodically evaluated
by the scheduler. Once a minimum of 512 bytes have been
written by a given process, the scheduler examines the pro-
cess’s socket_created and delete_requested fields
in conjunction with the computed entropy to classify the
running process as either benign, malicious, or suspicious.
Additionally, ransomware may choose to overwrite the files
with null bytes or shuffle their content and make them un-
readable [37]. Although we haven’t encountered any sam-
ples that performed the aforementioned actions, designing
ransomware with such characteristics is still possible and
would evade our system.

In addition to throttling write transactions, ransomware
may evade detection by distributing its execution across
multiple cores using different threads [31], [38]. Our design
can detect such attacks since it uses an application granular
approach. For instance, all of the entropy, network, and dele-
tion information is aggregated into a common data structure
(tgid_ransom_t) irrespective of how many threads the
ransomware uses. Furthermore, ransomware may employ
delayed attacks through the insertion of stalling code [25].
Our design can defend against such attacks since every

11

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

varmail
fileserver

webserver

videoserver

webproxy

mongo

1.6 1872 4403 97.4 514.3 673.5

T
h

ro
u

g
h

p
u

t
(M

b
/s

)
Baseline Design

(a) Filebench

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

openfiles

createfiles

copyfiles
deletefiles

listdirs
makedirs

removedirs

0 156 1249 0 422 0 0

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Baseline Design

(b) File operations

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

seqread
seqwrite

seqreadwrite

randomread

randomwrite

randomreadwrite

49.4 42.7 47.7 48.9 41.4 47.3

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Baseline Design

(c) FIO

Fig. 6: Summary of throughput experiments as a function of macro and micro benchmarks from Filebench and FIO.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

varmail
fileserver

webserver

videoserver

webproxy

mongo

0.44 77.2 217 3.1 202 35

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s
 (

K
o

p
s
/s

)

Baseline Design

(a) Filebench

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

openfiles
createfiles

copyfiles
deletefiles

listdirs
makedirs

removedirs

271 29.9 29.9 0.5 26.5 4.1 12.5

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s
 (

K
o

p
s
/s

) Baseline Design

(b) File operations

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

seqread
seqwrite

seqreadwrite

randomread

randomwrite

randomreadwrite

0.211 0.182 0.203 0.209 0.177 0.202

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s
 (

K
o

p
s
/s

) Baseline Design

(c) FIO

Fig. 7: Summary of IOPS experiments as a function of macro and micro benchmarks from Filebench and FIO.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

varmail
fileserver

webserver

videoserver

webproxy

mongo

58.1x10
3 40 100 0 100 500

L
a

te
n

c
y
 (

u
s
)

Baseline Design

(a) Filebench

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

openfiles

createfiles

copyfiles
deletefiles

listdirs
makedirs

removedirs

0 500 400 0 0 0 0

L
a

te
n

c
y
 (

u
s
)

Baseline Design

(b) File operations

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

seqread
seqwrite

seqreadwrite

randomread

randomwrite

randomreadwrite

594 687 614 595 708 615

L
a

te
n

c
y
 (

u
s
)

Baseline Design

(c) FIO

Fig. 8: Summary of latency experiments as a function of macro and micro benchmarks from Filebench and FIO.

running process is periodically evaluated for maliciousness
through the OS scheduler. If a process is initially classified
as benign during a given evaluation cycle, the scheduler
will continue to periodically monitor the process and flag
it in the cycle that correlates to the malware disclosing
its malicious activity. Finally, sophisticated forms of ran-
somware may exploit system level vulnerabilities and carry
out a privilege escalation attack prior to encrypting the
victim’s data. Although our design can still detect malicious
processes that run as root, once a process gains root access, it
could disable our defense through a newly installed kernel
and in turn compromise the victim’s data. However, we
argue that any in-host defense would be defeated under
such assumptions. Furthermore, most ransomware nowa-
days run in user mode since this is sufficient to encrypt the
victim’s data [31].

8 RELATED WORK

Ransomware Detection. A large body of research [8], [19],
[21], [30], [44], [55] explored various detection techniques
that are aimed at defending against cryptographic ran-
somware. For example, Kharraz et al. [21] proposed a
dynamic analysis framework that used an artificial envi-
ronment for identifying ransomware activity. Other work
explored the use of decoy files as a feature for detecting
malicious accesses to the filesystem [10], [23], [35]. More
recent work [22], [33] expanded on the aforementioned

approach by monitoring a range of content and behavior-
based features for fingerprinting ransomware activity. Other
work by Scaife et al. [44] focused on the use of an early-
warning detection system that was designed to notify users
whenever a process appeared to tamper with large amounts
of data. Other solutions [18], [19] proposed monitoring sys-
tem parameters, such as API calls, registry key operations,
and file type changes as features for detecting suspicious
activity. On the other hand, Moore [35] et al. explored the
use of honeypots. The authors achieved this by developing
a system that tracked changes to a honeypot folder that was
designed to lure ransomware into disclosing its runtime
behavior. Other work by Continella et al. [10] proposed a
system known as ShieldFS. The system leveraged an add-
on driver to enable monitoring low-level filesystem activity.
The activity was then logged and fed into a model that was
tuned to classify ransomware activity.

In addition, multiple bodies of work examined the use
of machine learning as a defense against ransomware [4],
[14], [28], [29], [41], [45], [46], [50], [54], [56]. For example,
EldeRan [45], a solution proposed by Sgandurra et al., lever-
aged machine learning to infer ransomware activity based
on early actions taken during the installation process. On the
other hand, work by Takeuchi et al. [50] and Vinayakumar
et al. [54] proposed a detection scheme that used API calls
as features. More recent work [4], [56], on the other hand,
considered the use of opcode sequences, instead, as features

12

TABLE 6: Comparison of our solution with existing ransomware defense systems.

Solution Dataset Size
(Crypto
Families)

FP FN Filesystem
Activity

Network
Activity

Process
Activity

MBR
Detection
Capability

File
Recovery

Real-time
Recovery

I/O
Performance
Overhead

UNVEIL
[21]

319 (8) 0.0% 0.0% ✓ ✗ ✓ ✗ ✗ ✗ -

Redemption
[22]

677 (29) 0.8% 0.0% ✓ ✗ ✓ ✗ ✗ ✗ 5.6%

CryptoDrop
[44]

492 (15) 3% 0.0% ✓ ✗ ✓ ✗ ✗ ✗ -

EldeRan
[45]

582 (11) 1.6% 3.7% ✗ ✗ ✓ ✗ ✗ ✗ -

RWGuard
[33]

261 (14) 0.1% 0.0% ✓ ✗ ✓ ✗ ✓(partial) ✗ 1.9%

ShieldFS
[10]

305 (11) 0.0% 2% ✗ ✗ ✓ ✗ ✓ ✗ 30%−380%

PayBreak
[26]

107 (20) - - ✗ ✗ ✗ ✗ ✓(partial) ✗ 150%

FlashGuard
[16]

1,477 (13) - - ✗ ✗ ✗ ✗ ✓ ✗ < 6%

Our Work 1,324 (18) 0.0% 0.0% ✓ ✓ ✓ ✓ ✓ ✓ < 1%

for performing the detection. Although high detection rates
have been reported for many of these solutions, the response
time of the aforementioned solutions, from data collection
to detection, often results in partially encrypted filesystems.
Therefore, leaving victims faced with ransom payment as
the only viable option. Unlike prior work, however, our so-
lution goes beyond ransomware detection. It instead focuses
on undoing the effects of ransomware attacks after a system
has been infected.
Data Recovery. To address the shortcomings of prior work,
various researchers proposed different data recovery tech-
niques as a solution against encryption ransomware [3], [15],
[16], [24], [26], [34], [40], [49]. For instance, Kolodenker et
al. [26] proposed a framework that relied on a key vault
designed to retain all cryptographic keys produced on the
system. Such keys are then retrieved to decrypt any affected
files in the event that a system becomes infected. Other
work by Subedi et al. [49] proposed isolating backup data
away from the device’s standard volume and making it
inaccessible to ransomware in order to mitigate backup
spoliation attacks. Finally [3], [15], [16], [34], [40], focused
on harnessing the intrinsic properties of flash drives. For ex-
ample, work by Huang et al. [16] proposed a framework that
leveraged out-of-place writes that are inherent in solid-state-
drives to recover encrypted data. However, such recovery
solutions require manual user intervention where victims
can experience long delays when restoring compromised
data. Similarly, recovery solutions that employ backups [10]
tend to incur non-trivial amounts of performance over-
head. Unlike prior work that can leave victims with costly
downtimes that stem from long data recovery periods, our
solution seamlessly preserves compromised data without
having to undergo an explicit recovery process. Further-
more, our work does not require retaining any confidential
data in order to undo the effects inflicted by ransomware.
Comparison to Existing Defenses. We compared our solu-
tion against eight notable defenses that represent the state-
of-the-art in ransomware detection and recovery. The differ-
ences in terms of dataset size, detection metrics and capabil-
ity, features, real-time recovery, and performance overhead

are outlined in Table 6. In general, our evaluation consisted
of executing a larger number of cryptographic ransomware
samples relative to other work [10], [21], [22], [26], [33],
[44], [45]. With the exception of [16], our dataset size for
cryptographic ransomware is 2× – 12× larger than what
was considered in the other studies. Although FlashGuard
[16] used a slightly larger dataset size of 1,477 samples,
the study only covered a total of 13 ransomware families.
Unlike Flashguard [16], our work considers samples across
18 recently released ransomware families. For example, our
evaluation included testing NoMoreRansom, a variant of
the Rapid family that was released in 2020. Furthermore, in
terms of detection rates, our work yielded no false positives
or negatives throughout the evaluation. The only work
that had similar results is UNVEIL [21]. However, unlike
UNVEIL [21], our work considers over 4× the amount of
cryptographic ransomware samples and covers more than
2× the number of families. The remaining studies [10], [22],
[33], [44], [45] exhibited a combination of false positives and
negatives. These results demonstrate the practicality of our
solution and its ability to distinguish between benign and
malicious workloads. We attribute this to the diverse set of
feature classes our study relies on for detection. For instance,
our work uses features that include monitoring activity at
the filesystem, process, and network levels. Although other
work considered using a combination of filesystem and
process activity monitoring for detecting ransomware, none
of the studies listed in Table 6 considered network activity
as a detection feature.

Another aspect we examined in our comparison relates
to the ability to detect master boot record (MBR) infecting
ransomware. In addition to detecting standard and multi-
threaded ransomware, our solution was able to detect MBR-
based ransomware. However, unlike our work, none of the
other defenses listed in Table 6 demonstrated the ability
to protect against such malware. In addition to MBR in-
fecting ransomware, we compared our solution to other
defenses in terms of file recovery capability. Our defense
was able to seamlessly restore all impacted files in real-time

13

without requiring the user to undergo an explicit recov-
ery process. Our solution was able to achieve this across
1,324 ransomware samples obtained from 18 families. This
was accomplished while demonstrating robustness against
evasion techniques that include MBR infecting ransomware,
multi-threaded ransomware, as well as smart ransomware.
Although solutions, such as RWGuard [33] and PayBreak
[26] offer file recovery, this recovery is dependant on ran-
somware using the Microsoft CryptoAPI. As such, the afore-
mentioned solutions cannot recover files that are encrypted
by ransomware that employ custom-written cryptographic
libraries. Solutions, such as ShieldFS [10] and FlashGuard
[16], on the other hand, offer full recovery of impacted files.
However, the aforementioned defense incur a non-trivial
amount of performance overhead. They also require the
system to undergo an explicit recovery process. This manual
user intervention can result in victims experiencing long
delays before any impacted files are restored. Finally, the
performance overhead introduced by our solution to the
I/O subsystem is negligible compared to other defenses.
Our solution incurs less than 1% overhead to I/O trans-
actions. This is significantly less than what was reported
for the studies listed in Table 6. In addition to I/O over-
head, our solution characterizes the computation overhead
associated with our defense. This is important since any
code that analyzes ongoing system activity in order to make
timely decisions, requires appropriating CPU cycles from
compute bound applications. Similar to I/O transactions,
our computation overhead is relatively small (less than 2%).
Other studies, on the other hand, do not explicitly evaluate
such overhead. Therefore, we do not discuss this in Table 6.
However, we note that multiple studies including [10], [33],
[45] employ machine learning algorithms as part of their
detection. Such algorithms typically involve a non-trivial
amount of computation.

9 CONCLUSION

This paper presents a novel runtime defense against cryp-
tographic ransomware. We develop a solution that effi-
ciently manages data synchronization between the memory
and storage subsystems to prevent maliciously encrypted
data from being permanently committed to the underly-
ing storage. We extensively validate the robustness of this
approach against more than one thousand ransomware
samples that span 18 ransomware families. Furthermore, we
demonstrate that our solution is resilient to ransomware that
employ techniques including master boot record infection
and multi-threaded attacks. Finally, we show that our proof-
of-concept implementation incurs negligible overhead while
running a diverse set of workloads.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and the editor for their feedback and comments on this
work. This work was funded in part by the National Science
Foundation under grant CNS-1947580.

REFERENCES

[1] VirusTotal. https://www:virustotal:com.
[2] Jens Axboe et al. Flexible i/o tester. Online] https://github.

com/axboe/fio, 2016.
[3] SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and

DaeHun Nyang. Ssd-insider: internal defense of solid-state drive
against ransomware with perfect data recovery. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
pages 875–884. IEEE, 2018.

[4] James Baldwin and Ali Dehghantanha. Leveraging support
vector machine for opcode density based detection of crypto-
ransomware. In Cyber Threat Intelligence, pages 107–136. Springer,
2018.

[5] Lawrence E Bassham III, Andrew L Rukhin, Juan Soto, James R
Nechvatal, Miles E Smid, Elaine B Barker, Stefan D Leigh, Mark
Levenson, Mark Vangel, David L Banks, et al. Sp 800-22 rev.
1a. a statistical test suite for random and pseudorandom number
generators for cryptographic applications, 2010.

[6] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[7] Krzysztof Cabaj, Marcin Gregorczyk, and Wojciech Mazurczyk.
Software-defined networking-based crypto ransomware detection
using http traffic characteristics. Computers & Electrical Engineering,
66:353–368, 2018.

[8] Jing Chen, Chiheng Wang, Ziming Zhao, Kai Chen, Ruiying Du,
and Gail-Joon Ahn. Uncovering the face of android ransomware:
Characterization and real-time detection. IEEE Transactions on
Information Forensics and Security, 13(5):1286–1300, 2017.

[9] Catalin Cimpanu. Conti Ransomware Attack. 2020 .
https://www.zdnet.com/article/conti-ransomware-uses-32-
simultaneous-cpu-threads-for-blazing-fast-encryption, 2021.

[10] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro,
Giulio De Pasquale, Alessandro Barenghi, Stefano Zanero, and
Federico Maggi. Shieldfs: a self-healing, ransomware-aware
filesystem. In Proceedings of the 32nd Annual Conference on Computer
Security Applications, pages 336–347, 2016.

[11] Malcomb Farber. Global Ransomware Dam-
age Costs To Exceed $265 Billion By 2031, 2017.
https://www.einnews.com/pr news/542950077/global-
ransomware-damage-costs-to-exceed-265-billion-by-2031.

[12] Andy Greenberg. Ransomware Attacks Hit Manufacturing - Are
You Vulnerable?, 2018. https://www.wired.com/story/notpetya-
cyberattack-ukraine-russia-code-crashed-the-world.

[13] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[14] Sajad Homayoun, Ali Dehghantanha, Marzieh Ahmadzadeh, Sat-
tar Hashemi, and Raouf Khayami. Know abnormal, find evil:
frequent pattern mining for ransomware threat hunting and intel-
ligence. IEEE transactions on emerging topics in computing, 8(2):341–
351, 2017.

[15] Jian Huang, Anirudh Badam, Moinuddin K Qureshi, and Karsten
Schwan. Unified address translation for memory-mapped ssds
with flashmap. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture, pages 580–591, 2015.

[16] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K
Qureshi. Flashguard: Leveraging intrinsic flash properties to
defend against encryption ransomware. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2231–2244, 2017.

[17] Gabriel Hung and Margarette Joven. Petya’s Master Boot
Record Infection, 2017. https://www.fortinet.com/blog/threat-
research/petya-s-master-boot-record-infection.

[18] Brijesh Jethva, Issa Traoré, Asem Ghaleb, Karim Ganame, and
Sherif Ahmed. Multilayer ransomware detection using grouped
registry key operations, file entropy and file signature monitoring.
Journal of Computer Security, 28(3):337–373, 2020.

[19] Sangmoon Jung and Yoojae Won. Ransomware detection method
based on context-aware entropy analysis. Soft Computing,
22(20):6731–6740, 2018.

[20] Kaspersky. What is WannaCry ransomware? https:
//usa.kaspersky.com/resource-center/threats/ransomware-
wannacry.

[21] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William Robertson,
and Engin Kirda. {UNVEIL}: A large-scale, automated approach
to detecting ransomware. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 757–772, 2016.

14

 https://www:virustotal:com
 https://www.zdnet.com/article/conti-ransomware-uses- 32-simultaneous-cpu-threads-for-blazing-fast-encryption
 https://www.zdnet.com/article/conti-ransomware-uses- 32-simultaneous-cpu-threads-for-blazing-fast-encryption
https://usa.kaspersky.com/resource-center/threats/ransomware-wannacry
https://usa.kaspersky.com/resource-center/threats/ransomware-wannacry
https://usa.kaspersky.com/resource-center/threats/ransomware-wannacry

[22] Amin Kharraz and Engin Kirda. Redemption: Real-time protection
against ransomware at end-hosts. In International Symposium on
Research in Attacks, Intrusions, and Defenses, pages 98–119. Springer,
2017.

[23] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge,
and Engin Kirda. Cutting the gordian knot: A look under the hood
of ransomware attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 3–24.
Springer, 2015.

[24] Haeun Kim, Dongchang Yoo, Ju-Sung Kang, and Yongjin Yeom.
Dynamic ransomware protection using deterministic random bit
generator. In 2017 IEEE Conference on Application, Information and
Network Security (AINS), pages 64–68. IEEE, 2017.

[25] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The
power of procrastination: detection and mitigation of execution-
stalling malicious code. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 285–296, 2011.

[26] Eugene Kolodenker, William Koch, Gianluca Stringhini, and
Manuel Egele. Paybreak: Defense against cryptographic ran-
somware. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 599–611, 2017.

[27] Malwarebytes Labs. Petya – Taking Ransomware To The Low
Level. https://blog.malwarebytes.com/threat-analysis/2016/04/
petya-ransomware.

[28] Nada Lachtar, Duha Ibdah, and Anys Bacha. The case for native
instructions in the detection of mobile ransomware. IEEE Letters
of the Computer Society, 2(2):16–19, 2019.

[29] Nada Lachtar, Duha Ibdah, and Anys Bacha. Toward mobile
malware detection through convolutional neural networks. IEEE
Embedded Systems Letters, 13(3):134–137, 2020.

[30] Kyungroul Lee, Sun-Young Lee, and Kangbin Yim. Machine
learning based file entropy analysis for ransomware detection in
backup systems. IEEE Access, 7:110205–110215, 2019.

[31] Mark Loman. How the most damaging ransomware evades IT
security. https://news.sophos.com/en-us/2019/11/14/how-the-
most-damaging-ransomware-evades-it-security, 2019.

[32] Robert Love. Linux kernel development. Pearson Education, 2010.
[33] Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino. Rw-

guard: A real-time detection system against cryptographic ran-
somware. In International Symposium on Research in Attacks, Intru-
sions, and Defenses, pages 114–136. Springer, 2018.

[34] Donghyun Min, Donggyu Park, Jinwoo Ahn, Ryan Walker,
Junghee Lee, Sungyong Park, and Youngjae Kim. Amoeba: an
autonomous backup and recovery ssd for ransomware attack
defense. IEEE Computer Architecture Letters, 17(2):245–248, 2018.

[35] Chris Moore. Detecting ransomware with honeypot techniques. In
2016 Cybersecurity and Cyberforensics Conference (CCC), pages 77–81.
IEEE, 2016.

[36] Steve Morgan. Global Ransomware Damage Costs
Predicted To Reach $20 Billion (USD) By 2021, 2019.
https://cybersecurityventures.com/global-ransomware-damage-
costs-predicted-to-reach-20-billion-usd-by-2021.

[37] Michael Nadeau. 11 ransomware trends for 2018. 2018
. https://www.csoonline.com/article/3267544/11-ways-
ransomware-is-evolving.html, 2018.

[38] Doug Olenick. How Conti Ransomware Works.
https://www.bankinfosecurity.com/how-conti-ransomware-
works-a-15763, 2021.

[39] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook
for students and practitioners. Springer Science & Business Media,
2009.

[40] Joon-Young Paik, Keuntae Shin, and Eun-Sun Cho. Poster: Self-
defensible storage devices based on flash memory against ran-
somware. In Proceedings of IEEE Symposium on Security and Privacy,
2016.

[41] Matilda Rhode, Pete Burnap, and Kevin Jones. Early-stage mal-
ware prediction using recurrent neural networks. computers &
security, 77:578–594, 2018.

[42] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto
Ros. Splash-3: A properly synchronized benchmark suite for
contemporary research. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 101–
111. IEEE, 2016.

[43] Cuckoo Sandbox. Cuckoo sandbox: automated malware analysis,
2015.

[44] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler.
Cryptolock (and drop it): stopping ransomware attacks on user

data. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS), pages 303–312. IEEE, 2016.

[45] Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, and
Emil C Lupu. Automated dynamic analysis of ransomware:
Benefits, limitations and use for detection. arXiv preprint
arXiv:1609.03020, 2016.

[46] Saiyed Kashif Shaukat and Vinay J Ribeiro. Ransomwall: A
layered defense system against cryptographic ransomware attacks
using machine learning. In 2018 10th International Conference on
Communication Systems & Networks (COMSNETS), pages 356–363.
IEEE, 2018.

[47] Yoni Shohet. Ransomware Attacks Hit Manufacturing - Are You
Vulnerable?, 2019. https://www.industryweek.com/technology-
and-iiot/ransomware-attacks-hit-manufacturing-are-you-
vulnerable.

[48] Tom Spring. Colonial Pipeline Shells Out $5M in Extortion Payout,
Report, 2021. https://threatpost.com/colonial-pays-5m/166147/.

[49] Kul Prasad Subedi, Daya Ram Budhathoki, Bo Chen, and Di-
pankar Dasgupta. Rds3: Ransomware defense strategy by using
stealthily spare space. In 2017 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pages 1–8. IEEE, 2017.

[50] Yuki Takeuchi, Kazuya Sakai, and Satoshi Fukumoto. Detecting
ransomware using support vector machines. In Proceedings of the
47th International Conference on Parallel Processing Companion, pages
1–6, 2018.

[51] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A
flexible framework for file system benchmarking. USENIX; login,
41(1):6–12, 2016.

[52] Georgina Torbet. Baltimore ransomware at-
tack will cost the city over $18 million, 2019.
https://www.engadget.com/2019/06/06/baltimore-
ransomware-18-million-damages.

[53] U.S. Goverment Interagency. How to Protect Your
Networks from Ransomware. https://www.us-
cert.gov/sites/default/files/publications/Ransomware-
Executive-One-Pager-and-Technical-Document-FINAL.pdf.

[54] R Vinayakumar, KP Soman, KK Senthil Velan, and Shaunak
Ganorkar. Evaluating shallow and deep networks for ransomware
detection and classification. In 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
pages 259–265. IEEE, 2017.

[55] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic
function detection in obfuscated binaries via bit-precise symbolic
loop mapping. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 921–937. IEEE, 2017.

[56] Hanqi Zhang, Xi Xiao, Francesco Mercaldo, Shiguang Ni, Fabio
Martinelli, and Arun Kumar Sangaiah. Classification of ran-
somware families with machine learning based on n-gram of
opcodes. Future Generation Computer Systems, 90:211–221, 2019.

ABDULRAHMAN ABU ELKHAIL (Member, IEEE) is a Ph.D. student in
the Electrical and Computer Engineering Department at the University
of Michigan, Dearborn. He has a B.S. in Computer Engineering from
Yarmouk University, Irbid, Jordan and an M.S. in Computer Engineering
from King Fahd University of Petroleum & Minerals, Dhahran, Saudi
Arabia. Before commencing his Ph.D., he worked in the industry for five
years. His areas of interest include system security, automotive security,
WSN and Ad Hoc networks, and IoT. He has several publications in
refereed journals and conferences, as well as two U.S. patents.

NADA LACHTAR (Member, IEEE) received a bachelor’s degree in
network engineering and security from Jordan University of Science and
Technology and the master’s degree in computer and information sci-
ence from the University of Michigan, Dearborn, where she is currently
pursuing a Ph.D. degree in the same discipline. Her research interests
include malware detection, system security, data privacy, and applied
machine learning.

15

https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware
https://news.sophos.com/en-us/2019/11/14/how-the-most-damaging-ransomware-evades-it-security
https://news.sophos.com/en-us/2019/11/14/how-the-most-damaging-ransomware-evades-it-security
 https://www.csoonline.com/article/3267544/11-ways-ransomware-is-evolving.html
 https://www.csoonline.com/article/3267544/11-ways-ransomware-is-evolving.html
https://www.bankinfosecurity.com/how-conti-ransomware-works-a-15763
https://www.bankinfosecurity.com/how-conti-ransomware-works-a-15763

DUHA IBDAH (Member, IEEE) received a bachelor’s degree in network
engineering and security from Jordan University of Science and Tech-
nology and the master’s degree in computer and information science
from the University of Michigan, Dearborn, where she is currently pursu-
ing a Ph.D. degree in the same discipline. Prior to joining the University
of Michigan, she worked as a network engineer at Cisco Systems. Her
research interests include systems security, networking, and privacy.

RUSTAM ASLAM is an undergraduate student in the College of Engi-
neering and Computer Science at the University of Michigan, Dearborn.
He is currently pursuing a B.S. in Computer Engineering. He has a
strong passion for working with the latest technologies and is interested
in specializing in the field of cybersecurity.

HAMZA KHAN is an undergraduate student at the University of Michi-
gan. He is currently pursuing a B.S. in Computer Science and is in
the third year of his degree. His areas of interest include security, data
privacy, and applied machine learning.

ANYS BACHA (Member, IEEE) is an Assistant Professor at the Univer-
sity of Michigan. He leads the Security and Systems Lab which focuses
on advancing the state-of-the-art in mobile and computer systems to
address important challenges in security, applied machine learning, and
energy efficiency. His research contributions have been published in
top tier venues where his work received various prestigious awards.
Furthermore, his industry impact is demonstrated through several U.S.
and World patents. Prior to joining academia, he spent over 13 years in
the industry where he worked in different Research and Development
roles on a variety of subsystems spanning the hardware, firmware, and
operating systems layers. He led multiple interdisciplinary efforts that in-
clude driving architectural changes into next generation Intel processors
that are necessary to meet the demands of emerging workloads. During
his tenure at Hewlett-Packard, Dr. Bacha led a group of engineers on a
multi-million dollar scalable computing project that broke world records
in performance in 2015 and 2014.

HAFIZ MALIK (Senior Member, IEEE) is currently a full Professor with
the Electrical and Computer Engineering (ECE) Department, University
of Michigan-Dearborn. He has published more than 100 articles in
leading journals, conferences, and workshops. His research interests
include automotive cybersecurity, IoT security, sensor security, multime-
dia forensics, steganography/steganalysis, information hiding, pattern
recognition, and information fusion. Dr. is funded by the National Sci-
ence Foundation, National Academies, Ford Motor Company, and other
agencies. Since 2015, he has been a member of the MCity Working
Group on Cybersecurity. He is a Founding Member of the Cybersecurity
Center for Research, Education, and Outreach at UM-Dearborn. He
is a Member Leadership Circle of the Dearborn Artificial Intelligence
Research Center, UM-Dearborn. He is also a member of the Scientific
and Industrial Advisory Board (SIAB), National Center of Cyber Security
Pakistan.

APPENDIX

16

Category Applications Samples

Communication
Beeper, Discord, Facebock Messenger, Flock, Geary, Google chats, ICQ, Kontact, Konversation, Zulip,

24MailSpring, Mattercord, Microsoft Team, 4K Video Downloader, NitroShare, Pidgin, Pixbuf, Signal,
Skype, Slack, Telegram, Whatsdesk, Yak Yak, Remote Desktop Viewer

Education Genius Math Tool, Grace, Klavaro, GLogic, Dictionary 5

Entertainment

Amarok, Angry Birds, Collision, Clementine Music Player, Google Play Music Player, SuperTuxKart,

29klines, Kodi, kblocks, Kubrick, kapman, MPV Media Player, Music Radar, Moviesquare, Musiko, Chess,
Open Surge, Oh My Giraffe, Pin-Town, PlayOnLinux, Ri-li,Quadrapassel, Spotify, Squarehead, Lagno,
Tiled Map Editor, VLC Media Player, Swell Foop, Tetravex

Health & Fitness MyFitnessPal, WebMD, LiveStrong 3
News Akregator, Liferea, QuiteRSS 3

Productivity

Android Studio, Atril Document Viewer, Audacity, Bitwarden, Boxy SVG, Brackets, Chartgeany, Tusk,

84

Caffeine Indicator, Weather, Calc (Excel), Draw (Visio), Impress (Power Point), Writer (Word), Eclipse,
Calibre, Carnet, Cheese, ClamTk, Converseen, Task Coach, Cura, Dropbox, Ebook-Viewer, WordPress,
Filezilla, FocusWriter, Font Manager, Geany, Gifex, GitKraken, GLabels, GNOME Tweaks, Wakeup,
Gscan2pdf, Handbrake, IDEA Ultimate, Inkscape, Gnome-Screenshot, Kdenlive Video Editor, Kontact,
KolourPaint, Krita, MATE Dictionary, MusicBrainz Picard, MyPaint, Nomacs, OBS studio, Okular,
Omniawrite, Organize My Files, PDF, PDF2GO, Peek, Plume Creator, Qalculate, QtQR, Rambox,
Rainbow Board, Record My Desktop, Scribus, Shutter, Planner, SimpleScreenRecorder, SpeedCrunch,
Speedy Duplicate Finder, Sublime Text, Subtitld, Synaptic Package Manager, Terminator, Calendar,
TeXstudio, Thunderbird, TurboWrap, Ubuntu Cleaner, Vim, VirtualBox, Zotero-snap, CopyQ, Everpad,
Kazam, Todoist, Texi2pdf, Visual Studio Code

Social Corebird (twitter), Mumble, Somiibo 3
Travel & Local Airbnb, Google Maps, TripAdvisor, Uber, Yelb 5
Web Browser Arora, Chromium Web Browser, Firefox, Google Chrome 4

Compression/Encryption pigz, xz, 7-zip, gzip, zip, lzop, lzma, pxz, bzip2, zstd, pax, tar, ar, Winzip, WinRAR,peazip, shar, cpio, 32
iso, kgb, zpac, file roller, Lz4, plzip, pbzip2, p7zip, lbzip2, pixz,zpaq, zipx, AESCrypt, RSA

Photo/Video Editing Kdenlive, PiTiVi, OBS Studio, Shotcut, OpenShot, Cinelerra, GIMP, DIGIKAM, Aoobe Photoshop, 17
Fotoxx, Pinta, ShowFoto, AfterShot Pro, Photivo, UFRaw, Pixeluvo, RawTherapee

Benchmark Suites

PARSEC 3.0 Blackscholes, Bodytrack, Canneal, Dedup, Facesim, Ferret, Fluidanimate, Freqmine,

42

Raytrace, Streamcluster, Swaptions, Vips, X264

SPLASH-3 Barnes, Cholesky, Fft, Fmm, Lu, Ocean, Radiosity, Radix, Volrend, Water-nsquared,
Water-spatial

SPEC2K6
Astar, Bwaves, Bzip2, CactusADM, Calculix, Gamess, Gcc, GemsFDTD, Gobmk,
Gromacs, H264ref, Hmmer, Lbm, Leslie3d, Libquantum, Mcf, Milc, Namd, Omnetpp,
Perlbench, Povray, Sjeng, Soplex, Sphinx3, Tonto, Wrf, Xalancbmk, Zeusmp

TABLE 7: Summary of benign applications and their corresponding categories.

17

	Introduction
	Background and Motivation
	The Page Cache
	Measuring Randomness

	Threat Model
	Design and Implementation
	System Call Interface
	OS Scheduler
	The Page Cache Subsystem

	Methodology
	Evaluation
	Ransomware Analysis
	Feature Set Characterization
	Detection and Filesystem Recovery

	Performance Overhead
	Compute-bound Workloads
	I/O-bound Workloads

	Discussion and Limitations
	Related Work
	Conclusion
	References
	Biographies
	ABDULRAHMAN ABU ELKHAIL
	NADA LACHTAR
	DUHA IBDAH
	RUSTAM ASLAM
	HAMZA KHAN
	ANYS BACHA
	HAFIZ MALIK

