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ABSTRACT Recent years have led the path to the evolution of automotive technology and with these new
developments, modern vehicles are getting increasingly astute and offering growing quantities of innovative
applications that cover various functionalities. These functionalities are controlled by hundreds of Electronic
Control Units (ECUs) which are connected to each other via the Control Area Network (CAN) bus. Although
ECUs are designed to offer various amenities that are associated with modern vehicles including comfort,
such features expose new attack surfaces that can be harnessed by attackers. This trend is exacerbated by
the fact that many of these ECUs rely on wireless communication for interacting with the outside world.
Therefore, making them vulnerable to common threats such as malware injection that can compromise
the overall security of modern vehicles. In this paper, we provide a detailed description of the architecture
associated with intelligent vehicles, and identify various security issues and vulnerabilities that impact such
systems. We provide an overview of different malware types and the vectors of attacks they leverage for
infecting modern vehicles. This work also presents a detailed survey of available defenses against such
attacks including: signature, behavior, heuristic, cloud, and machine learning-based detection measures.
Furthermore, this paper intends to assist researchers in becoming familiar with the available defenses and how
they can be applied to secure intelligent vehicles against emerging malware threats that can compromise the
security of today’s vehicles. It also provides future directions for researchers who are interested in developing
new defenses that can safeguard intelligent vehicles systems against malware attacks.

INDEX TERMS Vehicle security, vulnerabilities, security issues, malware, intelligent vehicle, malware
detection, intrusion detection system, defense system, cybersecurity.

I. INTRODUCTION
Vehicle systems have seen a great transformation since the
previous decade in many aspects going from vehicle control
to telematics and advanced driver help frameworks. Vehicular
systems have seen plenty of additions and increased their
complexity of using the ECUs to providemany improvements
in terms of functionality and comfort [1]. With the increase
in usage of ECUs in vehicle systems, functionalities have
improved, but they have also exposed vehicles to be more
susceptible to cyberthreat, making them more gullible to
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cyber attacks. For instance, with physical access to a vehicle,
an attacker can inject malicious messages into the CAN bus,
modify and read an ECU via vulnerable interfaces such as
CD players, USB and OBD-II [2]. To prove the fact, some
researchers have sent out fake messages using the in-vehicle
networks to different ECU’s, peruse ECU memory and ECU
security keys, peruse and alter ECU programming and control
a wide scope of vehicle capacities at ease [3]. Such attacks
can cause severe repercussions on the vehicle system tasks
and also bring great danger to the safety of the drivers.

On the other hand, with the development of wireless tech-
nologies such as Bluetooth, Wi-Fi, Cellular, LTE, and 5G,
vehicles can no longer be considered as closed systems,
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as they are increasingly equipped with functionalities that
interact with the environment through these technologies,
which can be exposed to attacks over-the-air (OTA) [4]. For
example, security keys have been used by vehicle key fobs
in order to hack a live system [5]. Radio signals are another
way for hackers to breach security and in a few instances,
researchers were able to transmit radio signals from a key
fob to the car without disrupting any security keys, allowing
attackers to simply unlock doors and steal or burglarize the
vehicle [6]. Another very common way for Hobbyists to mis-
handle systems is by tampering with the tire pressure mon-
itoring systems (TPMS) where one can set false readings to
send out bogus warnings, causing confusion to the driver [7].
Also, the authors of [1]–[3], [8] were able to inject malicious
firmware into a vehicle’s OTA system while performing an
ECU firmware update. Additionally, researchers could hack
into the steering and brakes of two cars [9]. In another
report, a team of hackers was able to hack a Tesla Model
S remotely from a distance of 12 miles [10]. Other work by
Miller and Valasek [11] was shown to hack and stop a Jeep
Cherokee running on a highway remotely, which led to a
recall of 1.4 million vehicles. Another example is provided
by Cai et al. [12], which revealed multiple vulnerabilities in
numerous BMWmodels including the ability to compromise
ECUs connected through CAN over a wireless connection.
Such a reality concerning vehicle attacks makes automotive
security one of the most critical issues.

Many attacks that previously could take place through
physical access only, can now be easily carried out remotely
with the help of wireless technologies. Therefore, allowing
attackers to breach into the vehicle systems with the possi-
bility of extending such attacks to multiple vehicles through
daisy chaining. One severe threat to intelligent vehicles is
malware which is a malicious software designed to obtain
unauthorized access to data or disrupt computer operations.
Malware can infect intelligent vehicles through a variety
of vulnerabilities, including wireless communication with
roadside networks, vehicle-based Wi-Fi hotspots, and inter-
net connectivity. Another common vector of attack is con-
cerned with malware-infected consumer electronic devices
such as cell phones, iPods, and laptops that can be physically
or wirelessly connected to the vehicle and in turn used to
exchange files between vehicles. Vulnerabilities in onboard
communication systems, software, and hardware designs, [2],
[8], [13] can also be abused by malware to infect a vehicle.
Malware can cause a wide range of disturbances and harm
to the vehicle system once it is inside the vehicle [1]–[3],
[8]. Some examples of how malware affects the vehicle’s
normal operation are: Toying with the general features of
the vehicle causing driver distraction, disrupting standard
functions of the vehicle like messing with the in-car radio so
that the driver cannot switch it on, locking the car’s features,
illegitimately occupyingmemory space and CPU cycles, mis-
handling of data and invading privacy, and disabling safety
features of the vehicle. The aforementioned examples under-
score that intelligent vehicular systems are a high priority

that must be appropriately handled in order to effectively
safeguard them.

In this paper, after offering a detailed description of
the intelligent vehicle’s architecture, this paper discusses
the security issues and vulnerabilities that intelligent vehi-
cles face. It also gives an overview of malware attacks
and examines the many forms of malware that might infil-
trate intelligent vehicles, as well as the malware’s proba-
ble methods of infection. It also provides a comprehensive
survey of available malware defense systems, categorizing
them into five categories: signature-based malware detection
techniques, behavior-based malware detection techniques,
heuristic-based malware detection techniques, cloud-based
malware detection techniques, and machine learning-based
malware detection techniques. It also discusses the upsides
and downsides of every defense system against malware
attacks and the various strategies that are utilized in these
defense systems. This paper aims to aid researchers in devel-
oping a broad understanding of malware protection systems
that are available for protecting such systems. It also iden-
tifies potential research directions for researchers to pursue
in order to increase the intelligent vehicle system’s resistance
against malware attacks. To the best of our knowledge, this is
the first study that offers a detailed survey of the most recent
existing malware defense systems and assesses the benefits
and drawbacks of deploying such defenses onto intelligent
vehicle systems.

Overall, this paper makes the following contributions:
• Provides an in-depth description of the intelligent vehi-
cle system’s architecture.

• Describes the most prevalent types of malware that
might infiltrate the intelligent vehicle system.

• Identifies the issues and vulnerabilities that intelligent
vehicles face in terms of security.

• Discusses all possible entry points for malware to infect
the intelligent vehicle system.

• Presents a detailed survey of the most recent malware
detection techniques in the last decade and discusses the
upsides and downsides of applying such techniques to
the intelligent vehicle system.

• Provides researchers with prospective study areas for
improving the intelligence of vehicle systems and mak-
ing them more resistant to malware attacks.

Overall, this paper represents an effort of understanding
how malware attacks affect vehicle systems and the best
practices undertaken for building safer and sturdier systems.
The paper is divided into the said sections: Section II gives a
detailed description of the architecture of intelligent vehicles.
Section III identifies the security issues and vulnerabilities
of intelligent vehicles. Section IV provides an overview of
malware attacks and discusses the main kinds of malware that
can infect intelligent vehicles, as well as the malware’s possi-
ble ways of infection. Section V discusses existing malware
defense techniques, as well as, their pros and cons. Section VI
discusses research problems for researchers to address and
provides future directions along with some recommendations
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FIGURE 1. The intelligent vehicle architecture.

for developing a more effective malware defense system for
intelligent vehicles; and Section VII concludes.

II. THE ARCHITECTURE OF THE INTELLIGENT VEHICLE
Driver assistance technology is the new future in the auto-
motive industry. Automotive companies are leaning towards
developing intelligent connected vehicles that are capable of
assisting the driver by including safety features like lane-
keeping assist, adaptive cruise control, brake collision, etc.
However, such technologies require a high-speed communi-
cation protocol that is suitable for all advanced Electronic
Control Units (ECUs). For this particular reason, the architec-
ture of intelligent vehiclesmust be designed in away such that
all the different ECU modules are able to communicate with
less complexity [14]. In other words, the architecture of intel-
ligent vehicles requires a technological upgrade with respect
to in-vehicle network architecture, computational platforms
and sensors. The architecture of the intelligent vehicle is
shown in Figure 1.

A. IN-VEHICLE NETWORK ARCHITECTURE
To have a better comprehension of the threats that ECUs face
against hackers, it is worth having an understanding of the
communication protocol between the ECUs that could serve
as a potential entry point for the hacker [15]. The Controlled
Area Network (CAN) bus was developed in 1983 by an auto-
motive company called Bosch [16]. This protocol has now
made it possible for different ECUs to communicate in a fast
and reliable manner. The CAN bus has provided a durable and
inexpensive solution that allows ECUs to communicate with

each other using a single CAN interface instead of analog and
digital inputs [16].

Each ECU transmits CAN frames to the receiver labeled
by an arbitration ID. All connected ECUs receive the frames,
but each ECU decides whether or not it can accept the frame
depending on the arbitration ID. Previously used electronic
architecture technologies weren’t able to allow much space
for different ECUs in intelligent vehicles. With the help of
the CAN bus, intelligent vehicle manufactures are now able
to fit many more ECUs while minimizing the complexity of
wiring [16]. Figure 2 illustrates different ECUs and how they
are connected to various electronic subsystems.

Each and every subsystem that we can see in Figure 2
has multiple ECUs that are responsible for controlling spe-
cific functionality in the vehicle [1]. Through a high-speed
communication protocol (CAN), different ECUs in differ-
ent subsystems are able to communicate with each other.
Different subsystems use different types of subnetworks
depending on the time sensitivity of each subsystem [15].
For instance, time-sensitive engine control, power-train, and
safety subsystems use the high speed controlled area net-
work (CAN) whereas fewer safety subsystems such as
seats and windows motor control use a Local Interconnect
Network (LIN) [14], [15]. The Automotive Ethernet (AE)
and the Media Oriented System Transport (MOST) are used
in the In-Vehicle Infotainment (IVI) subsystem to control car
radio, navigation system, Bluetooth, etc., [14], [15], [17].
The MOST network is isolated from electromagnetic inter-
ference because it utilizes plastic optical fibers as its phys-
ical layer which stops problems like buzzing noises in the
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FIGURE 2. In-vehicle network architecture.

infotainment system [14]. The AE has a great advantage
when it comes to bandwidth capacity since it can support
up to 100 Mbps that is slated to increase to nearly 1 Gbps
in the near future [14]. In general, the AE is considered to
be approximately 100 times faster than the CAN protocol.
Therefore, it would be a good choice to replace CAN with
Ethernet; however, due to the fact that Ethernet’s cost per
ECU is higher than CAN, it will most likely not replace but
rather get added on to it [18]. Flex-Ray is another in-vehicle
network that has high transmission rates and is used to obtain
a good control system. Flex-Ray supports drive-by-wire sys-
tems such as steer-by-wire and brake-by-wire which also
requires great error management to perform as a great driver
assistance system. The specification of the in-vehicle network
buses is shown in Table 1.
Intelligent vehicles nowadays offer access to an in-vehicle

network system to keep track of messages over this system
through the On-Board Diagnostics (OBD-II) port in order to
provide diagnostic reports. The intelligent vehicles are also
provided with an entertainment system with either a USB
connectivity option or a CD player. These options enable the
users to synchronize and access entertainment content from
their mobile devices and play or view them on the vehicle’s
entertainment systems. Besides, remote key entries and RFID
car keys are other modern car technologies that have been
largely applied to intelligent vehicles. These technologies

can be used to access the vehicle functions such as door
opening, flashlights and in some recent cases, are used to
even access ignition functions. In addition, the technology
of intelligent vehicles nowadays has tremendously shifted
towards connecting the in-vehicle network subsystem to the
outside world throughWiFi, Bluetooth, and cellular networks
such as LTE, 3G, 4G, and now 5G [20]. For example, a cell
phone can now connect to the infotainment system of the
vehicle wirelessly, using Bluetooth connectivity that allows
the infotainment system to use apple car play and android
auto through the connected phone. Furthermore, WiFi and
5G can be used to offer functionalities like Global Posi-
tioning System (GPS), digital radio and traffic messages.
Additionally, the telematics unit allows the car to commu-
nicate with 3G, 4G, and now 5G networks. It can send and
receive telematics data, communicate with back-end cloud
servers, and allow access to the internet. Moreover, Dedicated
Short Range Communications (DSRC) is an on-board vehi-
cle unit that is developed to establish short-range commu-
nications between Vehicle to Vehicle (V2V) and Vehicle to
Infrastructure (V2I) as well. DSRC offers great autonomous
technology services by allowing vehicles to exchange infor-
mation either with each other or with the infrastructure
such as roadside units that are surrounding the vehicle.
DSRC utilizes radio frequency (RF) channels to achieve this
communication [21].
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TABLE 1. The in-vehicle network buses specification [19].

CAN Bus: The CAN bus is a standard communication
protocol that is currently the most commonly used in the
in-vehicle networks. It is a broadcast-based protocol that
provides up to 1Mb/s data rate on a single bus and it
enables ECUs to exchange messages between them to con-
trol the process of vehicle components. The CAN protocol
adopts Carrier Sense Multiple Access / Collision Avoidance
(CSMA/CA) which prevents collisions on the bus when sev-
eral ECUs compete for access to the bus since all nodes
share the same bus. It also doesn’t have addressing scheme
like TCP/IP protocol. Therefore, when ECUs broadcast their
CAN message frames on to the bus, each message frame is
allocated a unique identifier, known as the CAN ID or the
arbitration ID, which defines the priority and the content of
the message frame. If two or more ECUs attempt to send
messages simultaneously, the message with the smallest ID
has the highest priority to transmit the message first. The
CAN ID range starts from 0x000 to 0x7FF for the standard
identifier field which has 11 bits.

In general, the transmitted messages frames on the CAN
bus are divided into four major types: the remote frame, the
overload frame, the data frame and the error frame. There
into, the remote frame is used to enable the received ECU
to request the data from specific ECU, the overload frame
is utilized to inform that the source ECU cannot receive the
data and the error frame is utilized to inform other ECUs
regarding the happened error. The Data Frame is used to
carry the data from the transmitter ECU to the receiver ECU.
The Data Frame is composed of the start of frame (SOF)
field which contains one dominant bit and informs a start of

FIGURE 3. Structure of CAN frame.

transmission to all ECUs, arbitration field which consists of
11 bits as an identifier and one bit as remote transmission
request (RTR) and characterizes the priority and the type of
the frame, control field which consists of two reserved bits
and four bits as data length code (DLC), data field which
includes the actual data in a range of 0 to 64 bytes. In addition,
the cyclic redundancy check (CRC) field which consists of
15 bits as CRC and 1 bit as CRC delimiter and performs the
data error detection, the ACK field which consists of one bit
as ACK part and one bit ACK delimiter part, and end of frame
which consists of 7 bits and indicates the end of the CAN
frame by a recessive bit flag [22]. Figure 3 shows the structure
of CAN frame.

B. INTELLIGENT VEHICLES’ COMPUTATION PLATFORMS
The vehicle’s computation platform plays an important
role in high intelligent vehicle systems to make sure that
the autonomous technology process is smooth, robust, and
efficient. Millions of lines of code must get executed in
order to accomplish different intelligent algorithms and
autonomous functionalities. Generally, Digital Signal Pro-
cessors (DSPs) and Micro-controller Units (MCUs) are used
for signal processing to establish several vehicle functions.
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Furthermore, DSPs are capable of establishing more com-
plicated applications that demand high quality processing
capacity and integration such as Advanced driver-assistance
systems (ADAS) [14]. Moreover, a robust and advanced com-
putation platform such as Graphics Processing Units (GPUs)
and Field-Programmable Gate Arrays (FPGAs) must be
implemented to ensure the efficiency of the autonomous
system. GPUs are a great way to perform various types of
image processing which could improve obstacle detection
algorithms, traffic signs, and all the ADAS functionalities.
FPGAs are also useful for similar computations with less
energy consumption [14], [23].

Looking at the software system of the computation plat-
form, the automotive industry uses many open systems such
as OSEK, JASPAR, and VDX. However, they fail to be
reusable for the advanced ECUs. Automotive Open System
Architecture (AUTOSAR) is also another open system that is
developed to divide the associated hardware from the appli-
cation software. This open system also requires additional
development to further assist the artificial intelligence and
machine learning algorithms [14], [24]. Software updates
over-the-air (OTA) are also important and highly recom-
mended to be implemented even after the vehicle is sold to
the customer to keep the operating systems up to date and
bring the latest features to the consumer.

C. SENSORS IN INTELLIGENT VEHICLES
As vehicles are becoming more technologically advanced in
order to achieve fully autonomous self-driven cars, intelli-
gent vehicles are using various types of sensors to achieve
autonomous vision. Therefore, fusing these sensors together
is an excellent way to ensure great autonomous stoutness.
Some of the main physical sensors that are used include:
• High-resolution Camera: A high-resolution camera
is used to detect various different shapes that help in
self-driven car technology. Through different stages of
image processing, and through the camera, the system
is able to detect lines in the road that help the vehicle
stay on course, as well as properly yield to other cars,
pedestrians, and any surrounding traffic signs. However,
cameras alone are insufficient for detecting distances
between the intelligent vehicle and the objects that sur-
round it, be it another car, an obstacle, or a traffic sign.
A great solution for this is to fuse it with a LiDAR or a
RADAR sensor.

• LIDAR: Light Detection and Ranging (LiDAR) sensor
that uses light in the form of a pulsed laser to map out
the surroundings of the intelligent vehicle at the speed
of light, namely 300 000 km/s. With the use of LiDAR,
intelligent vehicles are able to easily detect distances
between all the objects surrounding them.

• Ultrasonic: This sensor is also known as sonar. It is con-
sidered to be an electronic device that utilizes echolo-
cation to identify if an object is within range of the
sensor [25]. It can detect any object in its range by

transmitting and receiving ultrasound waves. It also has
the ability to measure the distance from the vehicle to
a target object by utilizing the time taken by the signal
to return back to the ultrasonic sensor after emitting it.
However, ultrasonic sensors have a visually impaired
zone created due to nearness and common obstruction
which may cause incorrect readings. Furthermore, mate-
rials with sonic wave dampening abilities like acoustic
foam have the tendency to compromise the readings
from ultrasonic sensors [26].

• RADAR: Millimeter-wave RADAR technology is very
commonly used in intelligent vehicles. The RADAR
is designed to obtain distances as far as 250 meters,
making adaptive cruise control and collision avoidance
very reliable [27]. A major advantage of RADAR lies in
its capability to penetrate nontransparent materials such
as dust, smoke, snow and fog [14]. RADAR is be able to
detect distances irrespective of the weather condition of
the operating environment. However, one disadvantage
of RADAR is the low side view it has which puts a limi-
tation on its horizontal view [28], [29]. One way to solve
this issue is by implementing a monocular camera which
helps in improving accuracy and precision [14], [30].

• Intelligent Vision Systems: The Intelligent vision sys-
tem is a combination of various sensors to achieve
reliable driving assistance. This system consists of
the monocular visual system and the stereo vision
system [14]. These visual sensors are responsible for
observing the driver’s attention towards the road and
the environment that the vehicle is operating in [31]. AI
technology and machine learning are essential for adapt-
ing to the driver’s environment and reacting accordingly.

III. SECURITY ISSUES AND VULNERABILITIES OF
INTELLIGENT VEHICLES
With the advancement of car innovation, intelligent vehicles
are getting progressively clever and are developing a number
of creative applications performing different functionalities.
These functionalities are controlled by 70 to 100 ECUs that
communicate with each other through the in-vehicle com-
munication buses [1]. While increasing the utilization of
about 100 ECUs improves functionality and comfort, it also
introduces a new cyberthreat by making vehicles a target
for attackers. Additionally, with the advancement of remote
communication innovations, vehicles can never be considered
as closed frameworks, as they are dynamically equipped with
functionality that interacts with the outside world [2]. Despite
the fact that remote communication technology brings many
improvements in terms of functionality and luxury, neverthe-
less, communications with the outside world exposes vulner-
abilities that can be abused by an attacker and lead to infection
of the vehicle. In this section, we discuss vulnerabilities
associated with intelligent vehicles, as well as the potential
ways an attacker could use to gain access to a vehicle and
deliver malicious payloads.
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A. THE VULNERABILITIES OF INTELLIGENT VEHICLES
With the advancement of automotive technologies, intelligent
vehicle systems are controlled through I/O access channels
of the embedded ECUs. These access channels present com-
mands and output to the users of intelligent vehicles. How-
ever, these channels are vulnerable to attack due to their lack
of security features such as authentication scheme, access
control and verification process. These access channels can
be categorized into four major categories: direct physical
access, indirect physical access, short range wireless access
and long range wireless access.

1) DIRECT PHYSICAL ACCESS (V1)
Automotive vehicles have many direct physical interfaces
that can become potential surfaces for an attacker to infect
an intelligent vehicle and have a malicious effect. These
surfaces can provide direct access to the ECUs and in-vehicle
network busses of an intelligent vehicle. Such an interface
is the On-Board Diagnostics system (OBD) which is usually
used by service professionals for performing diagnosis and
ECU programming during periodic maintenance inspections.
The OBD system can provide direct access to the vehicle’s
ECUs and its internal network busses through the OBD-II
port and the OBD dongle [32].

2) INDIRECT PHYSICAL ACCESS (V2)
The ECUs and in-vehicle network busses of intelligent vehi-
cles can be accessed through indirect physical interfaces
without the presence of the attacker. These interfaces can
be used by the user to indirectly pass commands or receive
communication from the targeted ECUs. Most intelligent
vehicles nowadays offer indirect physical access through the
entertainment system using physical sources such as CD,
disc, USB and iPod. However, these interfaces are vulnerable
to attack due to their lack of security features [2].

3) SHORT RANGE WIRELESS ACCESS (V3)
Since car technology and network system has tremendously
improved, vehicles are now exposed to the outside world
through either the short range wireless access or the long
range wireless access [33]. The short range wireless access
provides many advantages over direct and indirect physical
access as it would inflict many operational complexities,
in targeting precise locations, and the inability to control the
time of compromise. This type of communication method
works mostly on short ranges to attack the surface of automo-
tive wireless systems like Bluetooth, Remote keyless entry,
Dedicated Short Range Communications (DSRC) andWi-Fi.
For these architectures, hackers can put a wireless trans-
mitter close to the car’s receiver, depending on the channel
distance [2].

4) LONG RANGE WIRELESS ACCESS (V4)
The long-distance digital access channels, which are divided
into two types: broadcast channels and addressable channels,

have been deployed in intelligent vehicles now. The broadcast
channels, such as GPS, Traffic Message Channel, Satellite
Radio, and Digital Radio, are indirect channels that receivers
tune into as part of a media system that is connected to other
important ECUs. However, because it is difficult to attribute
and command multiple channels at once, these channels
are subject to external surface attacks, which might allow
an attacker to manipulate channels and their behavior. The
addressable Channels, as opposed to broadcast channels, are
direct channels that frequently employ cellular phone and
data networks and may be accessed over arbitrary distances.
However, this type of long-range wireless is vulnerable to
attack by the remote transfer system that provides continuous
connectivity through cellular voice and data networks [2].

B. ENTRY POINTS INTO INTELLIGENT VEHICLES
With the evolution of vehicle technologies, in the wrong
hands, these advanced technologies can lead to severe situa-
tions. To some degree, Intrusion Detection Systems (IDS) can
block the potential ways and access channels that an attacker
uses to gain access to a vehicle. Yet, no protection technique
is absolutely efficient; a protection technique can be effective
today however may not remain so for long, since hackers are
continually updating the entry points, and looking for new
ones. Therefore, in this section, we discuss the potential ways
and entry points that an attacker might use to gain access to a
vehicle in order to deliver a malicious effect. Furthermore, the
attacker’s presence in the vehicle, which specifies whether or
not the attacker should be present in the vehicle during the
compromise process. The scale which captures the approx-
imate scale of the attack and the cost which represents the
estimated effort involved in developing the attack capability.
All of the aforementioned factors are presented for each entry
point as shown in Table 2. Some of the potential entry points
that hackers may attempt to gain access to a vehicle include:
The OBD-II Port: The OBD-II port system in a vehicle is

responsible for tracking and modulating the vehicle’s perfor-
mance by monitoring the mileage, speed and other important
data [34]. The OBD-II port reports data acquired from its sen-
sors that are presented in the vehicle’s infrastructure and it’s
connected to the check engine light that emits once a problem
gets reported. However, the OBD-II port may be vulnerable
to malicious attacks since it lacks an authentication method
such as voices, facial features, retinas, irises, and fingerprints
that can be used to authenticate a vehicle’s owner identifi-
cation. Furthermore, the OBD-II port also lacks an access
control mechanism that assures that it is only accessible by
the vehicle’s owner. In other words, the OBD-II port may be
accessed not only by the vehicle’s owner, but also by other
users and parties. This vulnerability may be exploited by
unauthorized users and parties to get access to the vehicle
and carry out malicious actions within it. For example, the
OBD-II port can be attached to a laptop in order to interrogate
the car’s ECU program and this allows easy access to an
attacker to alter or delete or inject a malicious code into the
ECUs [2]. As a demonstration, by using an ECOM cable and
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TABLE 2. The entry points to the intelligent vehicles.

handmade connections to attach to the OBD-II port, Valasek
and Miller [35] were able to transmit and receive messages
over the CAN bus.
The OBDDongle: The OBD dongles are used to access the

reported data from the OBD-II port. This OBD dongle also
allows access to the CAN bus of the vehicle, which poses a
security threat to the ECUs that are connected through the
CAN interface. This allows attackers to easily get access to
the CAN bus through the OBD port and send bogus messages
to all the connected ECUs [2]. Although the fact that the OBD
dongle is a physical connection to the OBD port, modern cars
are implementing Wi-Fi technology to access the OBD port
through a computer. This allows the hacker to do a variety
of tasks on the vehicle, such as locking and unlocking doors,

turning on and off vehicles using push button start/stop, steer-
ing adjustments, and braking, among other things [36].
The Entertainment System: The entertainment system in

intelligent vehicles is an indirect physical access interface to
the vehicle ECUs. Most of the intelligent vehicles nowadays
are provided with a form of entertainment system that has
a USB connectivity option, disk option, iPod, or CD player.
These options enable the users to synchronize and access
entertainment content from their mobile devices, navigation
systems, USB devices, or from CD and play/view on the
vehicle entertainment system [37]. In the advanced systems,
the entertainment system is not standalone but also has a
CAN connection to ECUs of other systems in the vehicle.
These systems enable the synchronized mobile device to
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access more features on the vehicle apart from the media
system which creates a threat to the vehicle [2]. For exam-
ple, Cai et al. [12] demonstrated that attackers can create a
backdoor in the BMW vehicle entertainment system via the
USB port.
The Infotainment System: The infotainment system sup-

plies the vehicle with information and entertainment such
as emails, text messages, voice calls, personal contacts, and
many forms of information that can be gotten by interfac-
ing with a cell phone such as stream music, and watch
videos [38]. The infotainment system, on the other hand, may
be hacked using simple tools like a CD or USB flash drive.
Such a tool might be contaminated with malicious codes
and infiltrate the car’s infotainment system and spread to
other systems, such as those that control the vehicle’s engine
and brakes systems. As a demonstration, a research group
demonstrated an attack by altering an audio file to broadcast
malicious CAN messages to compromise different in-vehicle
systems When played on the vehicle’s media player [2].
Furthermore, researchers were able to get a permanent con-
nection to Mazda’s infotainment system by running a bash
script on the vehicle’s Linux working system [39]. Another
research group was able to access the address book, conver-
sation history and even location data remotely by connecting
the infotainment system’s root account [40].
The Telematics System: The Telematics system supple-

ments infotainment systems by giving information about
in-vehicular systems such as vehicle speed, acceleration, tire
pressure, fuel efficiency, oil life, door locking, seat belts,
transmission issues and engine failures [41]. Furthermore, the
telematics unit in the intelligent vehicles allows the vehicles
to communicate with 3G, 4G, and now 5G networks. This
allows attackers to get access to the vehicle through 3G, 4G
and now 5G and do a variety of harmful actions on the vehicle.
For example, researchers previously exploited a car’s telemat-
ics unit remotely without user interaction [2]. They also were
able by using reverse-engineering techniques to gain access
to the operating system of the telematics ECU. Additionally,
work by Jo et al. [42] investigated security risks in Android
OS-based telematics frameworks that allow drivers to access
and lock vehicle doors remotely, as well as start and stop the
vehicle engine
Sensors: As vehicles are turning out to be more inno-

vative to accomplish fully autonomous self-driven vehicles,
intelligent vehicles nowadays are utilizing different kinds of
sensors to accomplish the autonomous vision. Hence, com-
bining those sensors is an extraordinary method to guarantee
incredible autonomous strength. However, because there are
no adequate security mechanisms in place to restrict the
usage of sensors by installed apps, vehicles are exposed to
sensor based threats and attacks. For example, the sensors in
intelligent vehicles can be hacked easily either remotely or
physically. As a demonstration, Petit et al. have shown the
efficacy of relay and spoofing attacks against LiDAR [43].
Furthermore, Liu et al. used ultrasonic sensor attacks like
jamming and spoofing to test Tesla, Audi, Volkswagen, and

Ford. They demonstrated that all of the cars they examined
could be jammed and spoofed [44].
In-Vehicle Network Busses: Controller Area Network

(CAN) lacks sufficient communication protection. Since it
is a broadcast-based communication protocol and there are
no sender and receiver addresses, every node receives the
frame and it is not secured by any Message Authentication
Code (MAC) or digital signature [45], [46]. This creates
a threat to confidential data that could be either stolen or
manipulated by sending false and fake frames to each and
every node which causes unintended behaviors. For exam-
ple, an attacker can easily access the CAN bus and inject a
malicious message in the CAN bus either directly through
the OBD-II port or indirectly through the CD player, disc,
USB and iPod [2], [35]. Another example is provided by
Cai et al. [12] revealed multiple vulnerabilities in numerous
BMW models, including the ability to compromise ECUs
connected through CAN over a wireless connection.
Bluetooth: Bluetooth is currently available in most

intelligent vehicles and has a range of up to 10 meters.
It is commonly used to connect cell phones to the vehicle’s
infotainment and telematics system to make calls, check cal-
endars, and listen to music streaming. The Bluetooth, on the
other hand, does not need pairing with the target device or
even being discoverable. Almost every Bluetooth-enabled
device is at risk. This can be exploited by hackers to get access
to the vehicle, giving them full control of the vehicle and the
ability to carry out harmful operations within it. For example,
an attacker can link his or her smartphone with the intelligent
vehicle’s Bluetooth. Then the attacker can send a malicious
code to get uploaded into the system. This could be problem-
atic and implementing confirmation Bluetooth connectivity
on the infotainment system should be considered to make it
harder for a hacker to connect via Bluetooth [2], [47].
Remote Keyless Entry (RKE): This type of communica-

tion uses radio frequency communication in order to control
various functionalities of the intelligent vehicles remotely
such as open doors, control lights, activate alarms, and even
start and lock the ignition of the vehicle. The remote keyless
entry, on the other hand, is open to attacks since it doesn’t
have a security mechanism such as cryptographic to protect
the confidentiality of radio signal that will be transmitted
from the vehicle’s key. This vulnerability can be exploited
by hackers to get access to the vehicle without possessing
the key. The attack operates by eavesdropping the signal
transmitted when a driver presses his or her key fob to open
their vehicle. With $30 cost of equipment, the signal may be
cloned, allowing the hacker to have access to the vehicle in the
future. The attack can be within 100 meters of the car to clone
the key’s signal and the hacker can steal the car in less than
two minutes [87]. For example, Liu et al. [48] demonstrated
thatmany attacks can be infected to theHitag2 cipher which is
used in many remote keyless entry systems. Another example
is by Dibaei et al. [49] showed that two hackers were able to
steal a Mercedes-Benz vehicle by manipulating the keyless
entry system.
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Wi-Fi: The intelligent vehicles are currently equipped with
Wi-Fi and consequently, they can connect to the internet via
Wi-Fi hotspots on the roadway within the same range of the
vehicle. However, some of these wireless hotspots might put
the vehicle at risk for a variety of reasons. For instance, these
wireless hotspots may employ outdated encryption standards,
putting the vehicle security at risk. One of the initial encryp-
tion standards for wireless networking devices, the Wireless
Encryption Protocol (WEP), is deemed weak and vulnerable
to hacking. Wi-Fi protected access (WPA) was supposed to
take the place of WEP as the wireless networking standard,
but it, too, was proven to have flaws. Furthermore, these
wireless hotspots may expose vehicles to a rogue or fake
Wi-Fi hotspot [51]. For example, in the case of the vehicle
connect to a malicious hotspot, this allows the hacker to
operate many activities on the vehicle such as transfer mali-
cious code to the vehicle. As a demonstration, Nie et al. [50]
were able to remotely hack a Tesla vehicle by exploiting the
way that the secret key to an installed Wi-Fi was saved in
plain text. Furthermore, Nakhila et al. [51] showed that by
connecting to an illegitimate Wi-Fi access point, an attacker
may eavesdrop on Wi-Fi activity. Vanhoef et al. also looked
at the possibility of Denial of Service attacks against Wi-Fi
Protected Access [52].
DSRC:DSRC is an on-board vehicle unit that is developed

to operate short-range communications between Vehicle to
Vehicle (V2V) and Vehicle to Infrastructure (V2I). DSRC
offers great autonomous technology services by allowing
vehicles to exchange information either with each other or
with the infrastructure such as roadside units that are sur-
rounding the vehicle. DSRC utilizes radio frequency (RF)
channels to achieve this communication. However, this con-
cept could create an entry point for attacks to enter the DSRC
system and cause serious damage by transmitting fake infor-
mation. This can trick the vehicle’s system and cause catas-
trophic consequences if the hacker was successful. Therefore,
serious safety measures have to be taken into consideration to
protect V2V and V2I communications [21], [53].
Cellular: The intelligent vehicles are currently equipped

with cellular network technologies such as LTE,3G,4G and
now 5G [20] and consequently, they can communicate to
either another vehicle (V2V) or the infrastructure (V2I) at
long distances on the scale of miles [54]. Cellular networks,
on the other hand, are prone to eavesdropping and jamming
attacks [56]. Cichonski et al. demonstrated that LTE can
be hacked easily by jamming attacks and eavesdropping
attacks [56]. Other work by Muhammad and Safdar [55]
demonstrated that the LTE and 5G-based vehicular networks
are vulnerable to a huge number of attacks. This allows
attackers to track vehicle whereabouts in order to get access
to the vehicle and carry out harmful operations inside of it.
For instance, Miller and Valasek [11] have been able to hack
and stop a Jeep Cherokee running on a highway remotely
through 4G.
In-Vehicle Applications: The new development of the

vehicle industry has implemented a new system in the

Human-Machine Interface (HMI) screen that supports smart-
phone applications such as Google Android Auto and Apple
Car Play. However, those vehicle applications can cause secu-
rity threats and can create a path to inject malicious attacks
into the HMI and obtain unaccredited access to vehicle func-
tions. There is a chancewhere that automobile application can
be infected with an attack on the phone itself, thus creating
a potential threat to the vehicle’s functions if those infected
apps are being used by the vehicle’s HMI. Those automo-
bile applications support wireless mobile telecommunication
technologies such as 3G, 4G, 5G as well as WiFi and Blue-
tooth to communicate with the vehicle which makes intel-
ligent vehicles to be an open system that causes a potential
threat [15]. For example, an attacker can penetrate the appli-
cation itself and utilize this to get to a vehicle. Researchers
discovered several vulnerabilities in seven popular applica-
tions that permit attackers to gain entry to vehicles [57].
Furthermore, Symantec researchers explored fake malicious
applications that are created to look legitimate as the Uber
application [58].

IV. AN OVERVIEW OF MALWARE AND HOW ITS SPREAD
In this section, we first present an overview of malware
and common malware types. Second, we discuss the main
motivations of an attacker to spread malware to the vehicle
systems. Finally, we present the potential ways for Malware
to infect the vehicle systems.

A. AN OVERVIEW OF MALWARE AND ITS COMMON TYPES
Malware is a malicious code that embeds itself into a soft-
ware program that intentionally meets the harmful pur-
poses of the malicious attackers who target any computing
device [59]–[61]. Malware can enter any device through dif-
ferent channels such as files and directories from removable
media, downloaded applications and files, and through email
attachments. Once the malware reaches the device, the exe-
cution of the malware is easy by going through the interact-
ing user authorization privileges or by bypassing the PC’s
authentication strategies to run without the device victim’s
permissions. Once it’s executed on the device, it can harm
the infected device by compromising its functions, disturb-
ing its operations, stealing data or evading access controls,
gathering personal sensitive information without the victim’s
permission. It also can obtain unauthorized access to a net-
work system to create destructive damage to its subsystems.
Malware can be categorized into many categories based on
the way in which they cause harm and proliferate systems.
This section provides an overview of the most common sorts
of malware, including virus, worm, trojan, spyware, rootkit,
backdoor, botnet, adware, scareware, and ransomware [62].
• Virus: It is a type of malicious software that can repli-
cate itself into other programs and only attach them-
selves to other files, data, and computers when it is
activated [63]. Viruses cannot cause much harm unless
the infected transporter program is executed. The virus
usually runs with user involvement [64] and it can
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spread from one program to another and from one PC
to another [65].

• Worm: It is a malicious program that may infect any
machine, spreads over computer networks, and takes
advantage of system flaws to further its malicious pur-
poses. It utilizes networking protocols to inspect its
local network and grows once it comes upon possible
victim systems [66]. Worms can easily spread and exe-
cute within a system and also have the ability to repli-
cate itself in a PC to tamper with important documents
and the information on it [67]. It also has the ability
to encrypt data and deliver spam messages. Worms,
unlike viruses, have their own containers via which they
spread [68].

• Trojan: It is sometimes called a Trojan horse. It is
malicious software that can look legitimate with a useful
purpose while in fact, it is executing whatever task the
hacker intended. It can compromise computer security
by gaining unauthorized access to the compelling PC
and extract user confidential information such as credit
card information and user credentials and it can cause
much damage by executing unknown and unwanted
activities [69].

• Spyware: It is a malicious program that is installed on
any electronic device without the user’s knowledge and
it continuously spies on the user activities without the
user’s permission [70]. Spyware presents its danger only
if the device is connected to the internet since It can be
used to steal sensitive data like credit card information,
government and medical records without one’s knowl-
edge. Spyware collects this information and sends it to
the hacker, who can easily misuse the obtained data [71].

• Rootkit: It is a collection of malicious software
designed to allow hackers to access and change oper-
ating systems and kernel data structures for harmful
purposes [72]. Rootkits also give access to other types
of malware to enter into a system and conceal their
presence on the computer [73].

• Backdoor: It is one form of malware that gets the
infected PC to be remotely accessed without the user’s
permission by opening a backdoor in the victim PC [74].

• Botnet: It is malicious software that allows attackers
to remotely manipulate a group of infected and con-
trolled devices such as cellphones, PCs, tablets, and
internet of things devices. It happens without the users
being aware that their PCs have been infected by botnet
malware [75]. It is typically used for sending unruly
commands and spamming computer systems and per-
forming denial of service attacks [76].

• Adware: It is malicious advertising-supported software
that brings advertisements to the computer. It can infect
any system when a user tries to download free applica-
tions and software such as free playing games [77]. The
main sole purpose of this malware is to scrutinize the
user’s activities while they are networking [78].

• Scareware: It is malicious software that is designed
to mislead users into purchasing and downloading
unneeded and potentially harmful software and pro-
grams, such as fake antivirus protection, which have
posed serious financial and privacy risks to the
victims [79].

• Ransomware: It is a malicious program that allows the
attacker to either lock the victim’s computer or encrypt
the victim’s data, aiming to deny service to the victim
and restrict the victim access to his data in return for
ransom. The malware then demands a ransom payment
from the victim in order to restore access, and decrypt
the victim’s data on the infected computer [80].

B. MOTIVATIONS FOR INSTALLING MALWARE ON
VEHICLE SYSTEMS
There are a various number of motivations behind attackers
choosing to spread malware across vehicles. Here are some
of the few motivations:
• Financial Gain (M1): An attacker can restrict the
driver’s access to his vehicle by infecting the vehi-
cle remotely with ransomware which can disable the
vehicle’s functionalities such as immobilize the motor,
locking the in-vehicle radio and locking the doors.
Such an attack could restrict the vehicle’s functional-
ities in a way that the proprietor’s car keys can no
longer activate them. The attackers would then be able
to demand payoff before these functionalities were re-
enabled. As a demonstration for academic research pur-
poses only, work by Wolf et al. [81] showed that vehicle
ransomware can be easily created and deployed. Addi-
tionally, researchers from McAfee security [82] demon-
strated that the ransomware can block the use of the
vehicle until the ransom is paid. Furthermore, fraud can
be a major route for hackers to bring in cash. Hacked
vehicles could give access to stalkers to be able to track
the vehicle identification number of any potential victim
through GPS since all intelligent vehicles nowadays
have GPS. So in an event that an attacker can track
any vehicle, the attacker can begin assistance for any-
body that needs to track someone can in exchange for
money. As a result, the attacker can gain a lot of money
by tracking hundreds of vehicles. It’s an extraordinary
business. As an example of that, according to a report
from Boston 25 News [83], an attacker was able to track
a vehicle for many years by hiding a GPS tracking
device on the victim’s car. Another way of hackers to
bring cash is automated toll booth payments, it may
create more points of entry for hackers to steal individual
information, for example, visa or banking data. Hackers
are hoping to put forth the greatest benefit for the base
attempt since the intelligent vehicles are going to have a
lot of payment systems in order to provide the comfort
for the driver to pay via his vehicle when he goes to toll
roads and parking lots [84].
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• Infringement on the Driver’s Privacy (M2): An
attacker could infringe the privacy of drivers by infusing
spyware into a vehicle. An attacker could steal and
access sensitive and private data about the driver for
example, where he is located, his driving propensities,
his credentials, his visa and banking information, his
telephone number and call history, the music he tunes
in to, and considerably more. According to an IBM
Security report [85], a third party was able to gain access
to the personal information of 27.7million Texas drivers.

• Vandalism (M3): The malware can make a wide scope
of disruptions to a driver. Malware might deactivate the
brakes or force the car to abruptly slow down while
driving, resulting in an accident. Furthermore, malware
can be used to lock up infotainment systems in a vehi-
cle to a random radio station, tampering with the tire
pressure monitoring system’s displays or false messages
that force the driver to make important decisions while
driving, such as changing the audio level or displaying
arbitrary messages or images on the head unit display.
Any such disturbance could make the driver commit
dangerous errors while driving, cause auto collisions,
and harm a carmaker’s reputation. A team of hackers
was able to hack a Tesla Model S remotely from a
12-mile distance [10] for academic research purposes.
The authors of [81] demonstrated that ransomware can
be easily deployed and disabled the vehicle’s braking
system. Furthermore, a research group [86] were able
to disable the braking system of a 2009 Chevy Impala,
which can harm both the passengers and their properties.
Additionally, the authors of [11] were able to remotely
hack and halt a Jeep Cherokee running on a highway,
resulting in a 1.4 million car recall.

• Hobby and Fun (M4): Several hackers target just
PCs or cellphones for the sake of amusement or to
demonstrate their security expertise. It is foreseen that
numerous hackers will see the increasing populace of
vehicles as profoundly intriguing targets. Hacking vehi-
cles could create more prominent exposure than hacking
purchased PCs or smartphones. To prove the fact, Miller
and Valasek [11] were able to demonstrate that for aca-
demic research purposes they were able to hack and stop
a Jeep Cherokee running on a highway.

• Theft (M5): The malware attack may be used by an
attacker to unlock a car’s doors, disable its alarms, and
disable its immobilizer in order to steal the vehicle. As
proof of the concept, a research group [87] was able
to prove that for academic research purposes the ability
to steal a Tesla vehicle in few seconds by injecting the
malware through the firmware update into the key fob
via Bluetooth.

• Facilitation Extraneous (M6): Attackers most of the
time use intermediaries and different frameworks to
attack their final target. For this reason, it is important
to note that a few associations and frameworks may
essentially be advantageous focuses on that empower

and encourage the attacker’s activities. Consider bot-
nets, systems are compromised to enable them to then
attack other systems [88]. In this way, an attacker might
hack a victim’s vehicle system in order to track the
victim aiming to attack the victim’s home and such.
Furthermore, hackers might be less intrigued by the
victim’s vehicle’s systems and more intrigued by the
vehicle’s connected devices such as cell phones, laptops,
and tablets which can give them admittance to charge
card data, passwords, and monetary information, and
considerably more. In the event that they’re ready to
get into the victim’s vehicle’s systems and locate the
victim’s connected devices, the victim’s data might be
in danger. For example, [85], demonstrated that millions
of drivers’ devices have been accessed by a third party.

C. THE POTENTIAL WAYS FOR MALWARE TO INFECT THE
VEHICLE SYSTEMS
In addition to the potential ways presented in Table 2 for an
attack to infect the vehicle systems. There are other numerous
factors that influence the way malware can enter a vehi-
cle and exploit any vehicle network interface, physical or
wireless. Some of the factors are: F1) weaknesses in the
design of the software. F2) weaknesses in the hardware.
F3) weaknesses in the in-vehicle applications. F4) weak-
nesses in the in-vehicle network system. F5) The driver’s
inability to protect document downloads into the vehicle
when the driver accesses websites and downloads apps from
external sources. F6) External information may be laced with
weaknesses that can enter a vehicle, for example, a software
update bundle that can be infected with malware before it
gets stacked onto a vehicle. F7) weaknesses in the operating
systems utilized on the vehicles. There are various methods in
whichmalware can abuse these weaknesses to infect a vehicle
as shown in Table 3:
• Direct Access: An attacker can infect the vehicular sys-
tem with malware by getting direct access to the vehicle.
For example, Valasek and Miller were able to hack a
Jeep Cherokee’s infotainment system using the cellu-
lar network from a laptop. Upon scanning the network
for other vehicles with high vulnerability, 2,695 more
vehicles were discovered, which possessed similar vul-
nerabilities that exposed the jeep to be hacked [11].
Computerizing the attack with a laptop having all the
programming steps, the same laptop could be used to
hack other vehicles directly.

• Updates Over The Air (OTA): Intelligent vehicles as
of now have millions of lines of code and the intricacy
of in-vehicle programming keeps on developing. In this
way, remote OTA ECU firmware update turns out to be
progressively significant and expected, which increases
the chances of malware infecting vehicles from remote
locations [89]. For instance, the authors of [87] were
able to hack a Tesla vehicle OTA and steal it in few
seconds by injecting a malicious firmware update into
the key fob.
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• Web Browsers: Web browsers in intelligent vehicles
allow drivers to access the internet and download infor-
mation and other applications into their vehicles from
application stores provided by the vehicle maker. This
proves as a way for the malware to be downloaded
into the vehicle. For example, It has been demonstrated
that over 80% of the malware comes from well-known
sites [90], [91].

• Aftermarket Equipment: Aftermarket infotainment
systems use fastened or implanted devices to provide
network connectivity and also support in hosting third-
party applications. Many aftermarket equipments are
used widely to replace original factory installed hard-
ware, making it a huge threat to vehicles. For example,
infotainment system head units, which aremostly Linux,
Android, or Windows-based devices that can be readily
hacked to run malicious software. It has been demon-
strated [85] that a third party was able to access the
details of millions of drivers in Texas.

• Removable Media USB Flash Drive: Most intelligent
vehicles have USB connections to attach their newly
acquired devices. These connections permit the installed
system on a vehicle, for example, the infotainment sys-
tem, to get to information documents like music records
on the removable media. However, these removable
media can be contaminated with malware, which can
then infiltrate into the vehicle’s embedded systems in a
variety of methods. Such a method includes storing the
malware on the removable media under a benign name
such as firmware update in order to trick the vehicle’s
embedded system and consequently, introduce and run
the malware when the removable media is connected.
Another way is by adding malware to music records and
consequently, run the malware when the music record
is played. A research group demonstrated an attack by
modifying audio file to transmit malicious CAN mes-
sages to compromise various in-vehicle systems when
played on the vehicle’s media player [2].

• Operating Systems: While practices vary by the
automaker, the bulk of software running in intelli-
gent vehicles is not written by the automakers and
some of it comes from free open-source software,
such as Linux and Android and most of the intelligent
vehicles nowadays use LINUX or Android operating
system [92], [93]. Although the LINUX systems are
proved to be less affected by malware than other oper-
ating systems like windows, and android since they are
owned by limited repositories and operated by trusted
distributors. Nevertheless, it has been demonstrated that
the LINUX systems are not immune to malware and
LINUX malware has been on the rise [94], [95] and
what’s more, Linux apps and users can be tricked into
permitting malware to enter and execute [96].

• Spam and Advertising: Although adding more ser-
vices to vehicles brings comfort for the driver it like-
wise adds greater security risks. With the appearance

of internet services in intelligent vehicles that permit
Internet access from a browser, it is achievable to convey
another kind of spam dependent on geographical loca-
tion and travel. For example, as you approach a fast-
food restaurant, imagine a pop-up discount. Not only is
this type of behavior likely to be unpleasant, but it may
also cause drivers to get distracted. Additionally, those
kinds of spam and advertising are well-known infection
vectors for malware that can convey the malware to
infect the vehicle systems [77], [78].

• Third-Party Applications: Intelligent vehicles have
been allowing third parties to create applications for
extended services. For instance, an application on a
smartphone can be used to open or close vehicle doors.
These applications can harm vehicle systems as they
are open-ended and is accessible to everyone, making
them an easy target to hackers. Smartphone applications
are an easy target for hackers when compared to ECU’s
as applications provide many resources and are more
flexible and offer more resources. Vehicle applications
are also susceptible since certain third parties employ
shoddy security methods and credentials are frequently
stored in cleartext [50]. These applications may also
store individual data, for example, GPS information,
vehicle models, and other data. This situation has just
been shown by the OnStar application that permitted a
hacker to open a vehicle remotely [97].

• Vehicle-to-Vehicle Communications (V2V) technol-
ogy: V2V technologies establish communications in
vehicles on the road usingWi-Fi connections. V2V tech-
nology acts as a security layer to the vehicle while on the
road and also assists in decreasing vehicle speed when
it is very close to another vehicle. This technology can
also be used to speak with street sign device’s vehicle
to infrastructure (V2I) [98]. The data obtained can be
used to improve the driving experience and also safety.
The possibility of this technology being exploited by
malware will result in many connected vehicles being
affected in an adverse way [99], [100].

• Mobile Device to Vehicle: Intelligent vehicles nowa-
days have gotten typical to connect smartphones to the
vehicle, usually by Bluetooth. This association permits
hands-free calling while the driver is driving, playing
sound from the driver’s smartphone on the vehicle’s
speaker framework, and different comforts [37]. It is
additionally a potential vector for malware [101]. A
widespread smartphone virus or other smartphone mal-
ware probably won’t influence the smartphone’s behav-
ior at all but could stand by quietly for the smartphone
to pair with a vehicle, at that point transfer malware to
the vehicle [37].

• Supply Chain: Vehicles built with parts from various
manufacturers and suppliers might be having clashes
and wrong intentions with each other. This might cause
malicious software to embed into the creation cycle.
This malware is inactive until an external stimulus, for
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TABLE 3. Various methods for malware to infect the vehicle systems.

example, a signal arriving over the vehicle’s internet
connection, causes it to release its fatal impacts. As a
demonstration, the supply chain attack of Shadow Ham-
mer with ASUS systems led to 57,000 users having a
backdoored version of the live update utility [102].

• Home Base: Intelligent vehicles exchange information
with themaker’s PCs, including software updates, which
are a compelling method to get malware into vehicles.
This implies the well-being of the fleet is just on par
with the security of the producer’s corporate servers. On
the off chance that similar attacks effectively completed
routinely against retailers, banks, and sites are utilized
on vehicle manufacturers, it could place the maker’s
whole fleet in danger [103].

• WiFi Hotspot: Intelligent vehicles are currently
equipped with WiFi and consequently interface with
close-by hotspots with recognizable names. For
instance, on the off chance that the vehicle previously
connected with a hotspot with the name free WiFi, at
that point, the vehicle will probably interface with any
hotspot with a similar name automatically. A hacker
can use this feature to setup a malicious hotspot with
a common name and will have the option to get within a
close range of the vehicle to connect to it automatically,

at which point the hotspot can transfer malware to the
vehicle. These attacks can also spread to other vehicles
just by turning ON the Wi-Fi in the infected vehicles
which might to the creation of additional malicious
hotspots. Vehicles moving next to each other on roads
can act as transfer agents of malware almost like biolog-
ical viruses transmitted between humans [50]–[52].

• Software Bugs: The software bug is an instance of
software failing to behave as it was designed, usually
caused by mistakes made during the process of writ-
ing the software [104]. Bugs can cause software-based
systems to be unreliable, commit errors, or give access
and control to unauthorized parties [104]. The larger
and more complex the body of code, the more bugs it
is probably going to contain [104]. Today’s intelligent
vehicles can contain over a hundredmillion lines of code
and the intricacy of in-vehicle programming keeps on
developing. In this way, it will increase the software
bugs in the vehicles that hackers can exploit to infect the
malware on the vehicles [105], [106].

Once the malware infects any subsystem on a vehicle,
for example, an infotainment system, it will have the option
to harm other subsystems in the vehicle, as many subsys-
tems are connected internally creating a cross-framework
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functionality. Malware can transmit signals that cause a vehi-
cle’s regular operation to be disrupted. It may also launch
denial-of-service (DoS) attacks by flooding various subsys-
tems and in-vehicle networks with bogus messages in order
to bring down various subsystems [107]. In some cases,
malware may simply impact vehicle system performance and
make over-burden processes or making unauthorized access
to ECUs and harasses the passengers [91]. In the case of
spying, the malware conceals itself in the system, steals
sensitive information about the driver, and delivers it to the
attackers [91]. Identifying malware is important as there is
an increase in the damage to a large surface area and plenty
of potential entry points could be taken by the hacker if the
situation was not seriously taken.

V. EXISTING DEFENSE TECHNIQUES AGAINST MALWARE
In the last decade, researchers have explored a wide range
of malware defense solutions for computer and mobile sys-
tems. Those solutions can be categorized into signature-
based, behavior-based, heuristic-based, cloud-based, and
machine learning-based techniques [108]–[113]. In this
section, we present a detailed review of the main factors of
applying these defense systems to protect intelligent vehicles
against malware. These factors include the used approach,
the used data analysis method, the targeted operating sys-
tem, the detection time and the detection response, the
data source, the main advantages and disadvantages of each
defense system. Figure 4 shows the taxonomy dimensions
distributed into six classes. We also briefly describe these
classes below.

1) Technique. We classify the existing malware detec-
tion techniques into five categories, i.e. signature-
based malware detection techniques, behavior-based
malware detection techniques, heuristic-based mal-
ware detection techniques, cloud-based malware detec-
tion techniques, and machine learning-based malware
detection techniques. Each of these techniques has
certain advantages and disadvantages, we discuss the
benefits and drawbacks of each technique.

2) Analysis Methods. The whole detection process is
accomplished with static, dynamic and hybrid analysis
methods. The description of each method is presented
below.
Static Analysis. It’s a malware analysis method that
analyzes an executable code without actually executing
the code itself. In static analysis, the low-level informa-
tion from codes is extracted by disassembling the codes
by using any disassembler tools. The main advantage
of this method is revealing the code structure of the
program without executing it. However, this method
may fail in analyzing unknown malware. It may also
fail to detect malware that employs obfuscation and
evasion techniques in its code [114].
DynamicAnalysis. It’s amalware analysis method that
entails running the malware and monitoring its behav-
ior, interactions with the host system, and its impacts

on the host environment. The infected files in this
method are analyzed in a simulated environment such
as an emulator, virtual machine and sandbox in order to
make the environment invisible to the malware [115].
Although this method is efficient in detecting malware,
nevertheless, it may fail to detect malware that uses
obfuscation code and evasion techniques.
Hybrid Analysis. It’s a malware analysis method that
combines both dynamic and static analysis. It examines
almost all of the static features of any malware code
then combine them with other behavioral features to
better the overall analysis process. Despite this method
can overcome the limitations of both static and dynamic
analysis methods. However, it may result in a rise in the
execution time’s total overhead [116].

3) Target Operating System (OS). It refers to the oper-
ating system analyzed by the system. It can be LINUX,
Windows, or Android [92], [93].

4) Detection Time. It refers to the time between the
analyzed event and the detection itself. It can be real-
time (online) detection, which enables an automatic
response such as blocking the attacker and killing the
malware process, or non-real-time (offline) detec-
tion [117].

5) Detection Response. The relevant outcome of the sys-
tem, which can be a passive response which is an
event notification such as printing an alert message,
or an active response which is an automatic reaction
such as blocking the attacker or killing the malware
process [117].

6) Data Source. It refers to the source of the input data
analyzed by the system. It can be host logs which are
data from the operating system and system applications
or application logs which are data directly generated by
applications, or network traffic which are data gener-
ated by the network layer [117].

A. SIGNATURE-BASED MALWARE DETECTION
The signature-based malware detection process occurs in
two sequential phases. First, after identifying the malware,
a unique representation or signature for each malware must
be created. This process is generally achieved by using a
combination of manual and automated analysis of the data
obtained from networks and user devices. Second, every
device restores the malware signatures. It can then detect
if a file or data stream is infected by malware or not by
scanning the contents of malware signatures and uniquely
identifying each malware [91]. The signature-based detection
technique is the most often used in commercial antivirus
tools which create different unique signatures using produc-
tivity by looking at the disassembled codes of the malware
binary. The binary executable files are disintegrated using
various disassemblers and debuggers [118]. The features of
the disassembled code are extracted and analyzed further.
Then, these features are used to create the malware family’s
signature. The signature-based detection is simpler, faster and
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FIGURE 4. Malware detection system taxonomy.

safer to implement on intelligent vehicles when compared
to other techniques. It’s also efficient at detecting known
malware. However, it is insufficient for detecting unknown
malware and it is also subject to obfuscation and evasion
techniques [119].

Researchers have proposed several approaches to detect
malware based on the digital footprints of program files or
applications like [120]–[135]. Table 4 shows a detailed com-
parison of the signature-based detection for several published
articles in the last decade. These state-of-the-art approaches
have used different log files (i.e., application logs, host logs,
network traffic logs) to find the digital footprints. Most of
the works can detect malware on windows operating system
(OS). Researchers in [125], [130], [132], and [133] have
demonstrated their work on android OS. Works by [124]
and [135] remain the only two works that can detect Linux
OS-based malware. Apart from the OS dependencies, the
detection approaches differ in their way of analysis. Some
researchers like [120], [121], [132], [133], [135] tried to
detect malware by only considering the program bit file. That
means detection has been done without executing the code,
i.e., static analysis. For example, Shang et al. [120] proposed
a novel malware detection method based on function call
graph similarity. Other work by Shankarapani et al. [121]
used API call sequences and assembly instructions to detect
malware. The authors of [132], [133] have used control flow
graph signatures to detect malware. Wan et al. [135] was
able to detect malware based on using byte sequences of
executable files. Although these approaches are efficient at
detecting known malware and provide high accuracy, how-
ever, these approaches are insufficient for detecting unknown
malware. Furthermore, thesemethods are incapable of detect-
ing malware in real-time, making them unsuitable for use in
intelligent cars.

Additionally, the researchers in [122]–[124], [126]–[130]
have used the dynamic analysis (data acquired from running
application) to detect malware. For instance, the authors
of [122], [123] have used opcode sequences to detect mal-
ware. Similarly work in [129] and [130] have used Instruction
sequences and application permissions in order to detect
malware. Demme et al. [124] proposed a novel method to
detect malware based on hardware performance counters.
Despite these methods are effective at identifying known
malware and have a high level of accuracy compared to static-
based approaches, however, in addition to the high compu-
tational time required and hardware modifications needed,
these methods are also insufficient for detecting new mal-
ware. Additionally, these approaches are incapable of iden-
tifying malware in real time, rendering them unsuitable for
use in intelligent vehicles. Other works focus on a hybrid
approach that performs both the static and the dynamic
analysis [131], [134] in order to detectmalware. For example,
Fan et al. [131] used instruction sequences to detect malware.
Similarly, work by Ojugo et al. [134] proposed a method
to detect malware by using Boyer Moore string matching
algorithm. These approaches could guarantee efficiency and
accuracy higher than static and dynamic based approaches.
However, these approaches are not capable of real-time mal-
ware detection, which makes them impractical for implemen-
tation in modern cars.

The signature-based detection technique is simpler and
safer to implement compared to other detection techniques
since it typically requires less processing power. However,
it has numerous drawbacks when applied to defending intel-
ligent cars. For example, signature-based detection is ineffec-
tive in detecting new malware (zero-day malware) for which
no signatures have been generated. It’s also vulnerable to
obfuscation and evasion techniques [119]. Furthermore, the
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existing huge quantity of malware can result in an excessively
big malware signature database for a resource-constrained
in-vehicle device to store and analyze, which can increase
considerably during a vehicle’s lengthy lifespan [136]. A typ-
ical malware signature database now comprises over a mil-
lion malicious signatures, resulting in tens of gigabytes of
data [137]. As a result, when a car is manufactured, a huge
malware signature database must be loaded. However, it will
be difficult to anticipate how large a database should be put
on a car when it is manufactured, so that it would be able to
handle all potential new malware during the vehicle’s long
lifespan [136]. As a result, a vehicle’s storage capacity may
need to be increased over time. Additionally, as the number
of malware signatures rises [138], the amount of processing
power required to scan files for malware signatures will also
increase. That is to say, the needed CPU capacity on a vehicle
confronts the same problem as the required storage space
for malware signatures. Furthermore, when new malware is
detected and new malware signatures are created, the mal-
ware signature database on each vehicle must be updated on
a regular basis. However, frequent malware signature updates
to millions of vehicles will be difficult to handle and can be
costly to vehicle owners.

B. BEHAVIOUR-BASED MALWARE DETECTION
The behavior-based malware detection technique is used to
analyze the execution of a program in order to determine
whether it is malicious or not [139]. This approach analyzes
the execution of a program in a secure environment such as
a virtual machine or a sandbox environment. This technique
also uses monitoring tools in order to monitor and determine
the behaviors of a program and decide if the program is
malicious or benign based on its behaviors [140], [141]. This
technique allows the vehicle to detect malware without rely-
ing on off-board systems, even with zero-day malware that
has never been seen before [142]. The main purpose of this
technique is to examine the behavior of any type of malware.
Although the malware codes can be developed in different
ways depend on the malware makers, however, the malware’s
behavior remains the same, consequently, the majority of
new malware may be discovered using this technique [143].
This is the main advantage of this technique, however, some
malware samples on the other hand do not run properly in
a secured environment such as a virtual machine and sand-
box environments. As a result, malware samples may be
incorrectly classified as benign. Furthermore, this approach
is insufficient for identifying all behaviors for a program
and classifying them as malicious or benign. Additionally,
the advanced code obfuscation and evasion techniques can
simply preventmalware from being correctly evaluated [143].

Multiple bodies of work have adopted behavior-based
malware detection technique as a solution against mal-
ware [144]–[159]. Table 5 presents a detailed comparison of
the behavior-based detection solutions. These state-of-the-art
approaches use the application’s potential behavior in order
to detect suspicious activities. Similar to the signature-based

detection approaches, the majority of the presented solutions
use the data file logs and have been demonstrated on Win-
dows, Android, Linux OS. Another similarity between the
behavior-based and signatures-based techniques is using the
same data analysis methods (static, dynamic, and hybrid).
For example, Sheen et al. [152] proposed a novel method for
detecting malware based on static analysis of API calls and
permissions. Similarly, the authors of [148], [149] have devel-
oped a method to detect malware based on hybrid analysis of
API call sequences. Although the fact that these approaches
have a high detection rate, nevertheless, cost efficiency, over-
head, and detection time are the main drawbacks of these
approaches. Because of these drawbacks, these approaches
are unsuitable for intelligent vehicles.

In addition, multiple bodies of work examined the use of
dynamic analysis for detecting malware [144]–[147], [150],
[151], [153]–[159]. For instance, Nikolopoulos et al. [155]
proposed a dynamicmalware graph-based detection approach
based on converting system calls to a temporal graph. Despite
this approach provides a high detection rate, nevertheless,
it has high time consumption and high complexity, which
makes it unsuitable for use in intelligent vehicles. Other work
by Marhusin et al. [157] proposed a malware n-grams-based
detection method based on extraction of API sequences. This
method has a low false-positive rate, on other hand, this
method has high detection time and high complexity, which
makes it unsuitable for use in modern cars. Similarly, the
authors of [158], [159] proposed a dynamic malware detec-
tion approach based on analysis of API calls and permissions.
Other work byDas et al. [154] proposed a dynamic hardware-
basedmethod for detectingmalware based on system call pat-
terns by using processor and field-programmable gate array
(FPGA). In this method, the system calls first are extracted
and the features are constructed. Then, the extracted features
from the benign and malware samples are utilized to train
the multilayer perceptron machine learning classifier. The
evaluation results of this method showed that this method can
detect malware in real-time and block their execution within
the first 30%of their execution. Although thismethod [154] is
the only solution that can detect malware in real-time and has
an active detection reaction, while the remaining approaches
are not capable of real-time detection. However, this solu-
tion [154] is highly complicated, not cost-effective, and not
adaptable for intelligent vehicles since it requires hardware
modifications to be made into the vehicle devices. As a result,
the hardware changes that will bemade tomillions of vehicles
will be difficult to handle andmay be costly to vehicle owners
and automakers as well.

The behavior-based detection technique has an advantage
over the signature-based detection technique in detecting
new malware generations (zero-day malware) that has never
been seen before. The behavior-based detection technique,
on other hand, is difficult and complex to implement com-
pared to the signature-based detection technique since it typ-
ically requires higher processing power and more resources.
Although the fact that the behavior-based detection technique
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has the advantage of detecting most of new malware gener-
ations. However, it has a lot of drawbacks when applied to
safeguarding intelligent vehicles. For instance, the behavior-
based detection approach is insufficient for recognizing and
categorizing all of a program’s behaviors as malicious or
benign. As a result, an abnormally high rate of false posi-
tives or false negatives may occur [144], [158]. Furthermore,
complex code obfuscation and evasion techniques might sim-
ply prevent malware from being properly assessed [143].
Additionally, when compared the behavior-based detection
technique to signature-based detection, the behavior-based
detection approach is much more difficult to install and
resource-intensive to execute on each vehicle. As a result, this
technique might not be appropriate for resource-constrained
in-vehicle devices that also require a lightweight solution.
Furthermore, any behavior-based approach implemented on a
vehicle todaywill almost certainly become obsolete over time
and will need to be modified or replaced during the vehicle’s
long lifecycle [136].

C. HEURISTIC-BASED MALWARE DETECTION
The heuristic-based malware detection technique is used to
examine program files for suspicious characteristics or emu-
late the execution of a program or chosen ports of the program
to identify if it will perform malicious activities or not [160].
This technique is known for its complexity since it relies on
previous experiences and other methods such as data mining,
rule-based and machine learning to learn the characteristics
of a program in order to assess whether it is malicious or not.
It is also used by a lot of existing antivirus software [161].
It is also capable of detecting a wide range of known and
unknown malware [162]. This methodology can also allow
the vehicle to identify malware without relying on off-board
systems, even with zero-day malware that has never been
detected before [3]. Although this technique is capable of
detecting a wide range of known and unknown malware
with a high degree of accuracy, however, it fails to identify
most new malware generations and sophisticated malware as
well [160]. Furthermore, it is vulnerable to the advanced code
obfuscation and evasion techniques that might simply prevent
malware from being correctly detected [143].

Several researchers have proposed various heuristic-based
malware detection techniques in the last decade [163]–[177].
A thorough comparison of heuristic-based detection solu-
tions is included in Table 6. Some researchers like [165],
[170], [172], [177] have relied on static analysis to detect
malware. For example, the authors of [165], [172] have
proposed a method for detecting malware based on con-
trol flow graphs and extracted opcodes from disassembled
executable files. Work by Zaker et al. [170] used Dynamic
Link Libraries (DLLs) to detect malware. Other recent work
by Suryati et al. [177] relied on API calls network for
detecting malware. These methods are effective at identifying
known malware; however, they are insufficient for detecting
unknown malware. These approaches are complex and prone
to high false-positive rates. These methods are also incapable

of identifying malware in real-time since they require high
time for detecting malware, making them unsuitable for use
in intelligent vehicles.

Additionally, researchers in [167], [174], [176] have relied
on dynamic analysis for detecting malware. For instance,
Shabtai et al. [167] proposed a dynamic method for detecting
malware based on monitoring system opcode n-gram pat-
terns. The authors of [174], [176] have proposed a dynamic
graph-based method for detecting malware based on con-
verting system calls to a graph. However, in addition to the
high complexity and high computational time needed by these
methods to detect malware, these methods are invalid to
detect malware if malware can hide its malicious behaviors.
They are therefore unfit for use in intelligent cars. Other
researchers have used hybrid analysis for detecting mal-
ware [163], [164], [166], [168], [169], [171], [173], [175].
For example, the authors of [163], [164] have used API
calls and opcode sequences to detect malware. The remaining
works [166], [168], [169], [171], [173], [175] relied on the
graph-based method, in which the classification is done on
the basis of a graph. For instance, in [166], the authors have
implemented a solution against malware based on opcode
similarity, in case of malware attack, the commands are
present in the code which should not be present in a normal
set of code. Other work by Narayanan et al. [173] proposed a
hybridmethod for detectingmalware through online learning.
The online machine learning-based framework was used to
learn the new malware features over time. This approach was
able to detect both known and unknown malware in real-
time. However, this method [173] has high complexity and
requires high computational power, hence, is not feasible for
intelligent vehicles due to the limited computing power of
the ECUs to procedure such a complex process. Furthermore,
the response time of this method, from data collection to
detection, frequently results in a partially damaged vehicle
system, putting drivers at risk.

The heuristic-based detection technique outperforms both
signature-based detection and behavior-based detection tech-
niques in detecting unknown malware. In contrast to
signature-based detection and behavior-based detection tech-
niques, the heuristic-based detection technique is more dif-
ficult and complex to execute since it generally needs
more computing power and resources. Despite the fact
that heuristic-based detection offers the benefit of detecting
unknown malware. When it comes to protecting intelligent
cars, however, it has a number of limitations. For example,
this technique might fail to detect new malware generations,
as well as sophisticated malware [160]. It’s also vulner-
able to complex code obfuscation and evasion techniques,
which might prevent malware from being identified appro-
priately [143]. Additionally, this technique is known for its
complexity because it depends on prior experiences and other
approaches such as data mining andmachine learning to learn
the features of a program in order to determine whether it
behaves maliciously or not [160]. As a result, this technique
might not be suitable for resource-constrained in-vehicle
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gadgets that also need to be light. Furthermore, any heuristic-
based solution deployed on a vehicle today would almost
definitely become obsolete over time, requiring modification
or replacement at some point throughout the vehicle’s lengthy
lifespan [136].

D. CLOUD-BASED MALWARE DETECTION
Cloud computing has grown a lot in popularity in the last
decade since it provides a lot of benefits, including easy
access, on-demand storage, and reduced prices. Because the
cloud became so popular in the last ten years, it has also
been utilized recently to detect malware. The Cloud-based
malware detection technique employs a variety of detection
agents that are hosted on cloud servers and provides security
as a service. Furthermore, a user can submit any type of file
and obtain a report indicating whether the submitted file is
malware or not [178]. The main advantage of the Cloud-
based malware detection technique is that it can enhance the
detection performance of PCs, mobile devices and vehicu-
lar systems with significantly huge malware databases and
ponderous computing resources. Other advantages of this
technique are Installations, configurations, setups are updated
regularly. However, the cloud-based malware detection tech-
nique, on the other hand, has significant drawbacks. For
example, the internet connection must constantly be fast and
always available in order to work properly, but this is not
always the case. Furthermore, in the cloud, real-time moni-
toring of all files is not possible. Additionally, this technique
is vulnerable to obfuscation and evasion techniques [17].

Recently, several researchers have used cloud-based tech-
niques to analyze and identify malware [178]–[194]. Table 7
shows a detailed comparison of cloud-based malware detec-
tion solutions. Researchers like in [178], [181], [189] have
relied on static analysis to detect malware. For example,
Ye et al. [178] have used file content and file relations fea-
tures for detecting malware. Similarly, work by Li et al. [189]
proposed a static method to detect malware based on n-
gram string features. However, in addition to the high cost
and high overhead of these methods, they are not up to
the task of detecting unknown malware. These methods are
also inappropriate for usage in intelligent cars since they
are incapable of detecting malware in real-time because
they need a long time to detect malware. In recent stud-
ies, dynamic analysis has been utilized in the cloud to
detect malware [188], [190]–[194]. For instance, the authors
of [188], [192] have proposed a dynamic method for detect-
ing malware based on monitoring system calls. Similarly,
work by Mishra et al. [194] proposed a dynamic method
to detect malware based on n-gram features. The authors
of [191], [193] have used hardware features and hardware
performance counters to detect malware. However, in addi-
tion to the additional resources and sophisticated hardware
changes that these approaches necessitate, they are unable to
detect malware in real-time since they need a long time to
identifymalware. Unfortunately, because of these drawbacks,
these approaches are unsuitable for intelligent vehicles.

In addition, several studies have looked into the use of
hybrid analysis to detect malware [179], [180], [182]–[187].
For example, Jarabek et al. [180] have proposed a web-
based method for detecting malware based on file scanning
services. However, this method can’t keep track of all files in
the cloud in real-time. The authors of [182], [186] have pro-
posed monitoring system parameters, such as API calls, file
contents and permissions as features for detecting malware.
However, these approaches might fail in detecting malware
in the cloud if the malware can disguise its harmful activities.
Other work by Yadav et al. [187] proposed a hybrid approach
for detecting malware by utilizing fuzzy k-means and deep
neural network in the cloud. However, this technique requires
a large quantity of data for training, hence, this technique
consumes enormous time for training, making it unsuitable
for use in current intelligent cars.

The cloud-based malware detection technique has a num-
ber of advantages over conventional malware detection tech-
niques, including quick access, on-demand storage, and lower
pricing. The major benefit of using a cloud-based malware
detection approach is that it may improve the detection per-
formance of any system with large malware databases and
a lot of processing power. Other benefits of this approach
are installations and setups are all updated on a regular basis.
However, it has a lot of drawbacks when it comes to protect-
ing intelligent vehicles. For example, this technique is subject
to sophisticated code obfuscation and evasion techniques,
which may make malware difficult to detect in the cloud [17].
The other issue of this approach is real-time monitoring of
all files in the cloud is not possible, making it impractical
for implementation in intelligent vehicles. Additionally, this
technique requires a reliable internet connection in order to
work properly for security implementation, however, if for
some reason the internet connection is lost, in that case,
security can be compromised. As a result, this technique
might not be safe enough for applying for intelligent vehicles.
But with the advent of high-speed 5G technology [20], this
technique might be safer to apply for intelligent vehicles.

E. MACHINE LEARNING-BASED MALWARE DETECTION
For many years, machine learning methods have been
employed to identify malware [195]. Naive Bayes (NB),
bayesian network (BN), logistic regression (LR), logistic
model trees (LMT), C4.5 decision tree variant (J48), sequen-
tial minimal optimization (SMO), random forest tree (RF),
multilayer perceptron (MLP), k-nearest neighbor (KNN),
and support vector machine (SVM) are examples of well-
known machine learning algorithms that have been used
for many years in malware detection [195]. Although each
algorithm has its own set of benefits and drawbacks, it is
impossible to say that one is more effective than the other.
However, one algorithm can outperform other algorithms in
terms of the distribution of data, the amount of features,
and the correlations between characteristics and attributes as
well [195]. Deep Learning is a subfield of machine learning
that evolved from artificial neural networks (ANN) that learn
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from examples. It is a novel methodology that is extensively
employed in image processing, voice control, intelligent vehi-
cles, and recently in malware detection as well [196]. It seems
highly effective and dramatically lowers feature space and
is powerful to detect malware. However, it can be deceived
by obfuscation and evasion attacks. Furthermore, building a
hidden layer requires a lot of time, and adding more hidden
layers seldom improves model performance [197].

In the last decade, researchers have proposed vari-
ous machine learning-based malware detection techniques
[198]–[221]. Table 8 and Table 9 show a detailed com-
parison of machine-based malware detection solutions. Some
researchers have used machine learning for detecting mal-
ware based on static features [201], [204], [207], [212], [214],
[217], [218], [220]. For example, the authors of [201], [204],
[207], [212], [214], [218], [220] have used static features
such as system calls, strings, byte sequences, DLLs, data
flow, native opcodes and image features for detecting mal-
ware. However, these methods may fail to identify malware
if the malware is able to hide its destructive activities and
its contents. Furthermore, the time it takes for these methods
to respond from data collection to detection usually results
in a partially damaged system, making them unsuitable for
use in intelligent vehicles. Other work by Sayadi et al. [217]
proposed a novel method for detecting malware based on
microarchitectural features. However, in addition to the high
computational time and sophisticated hardware changes that
are needed by this method to detect malware, this method is
also incapable of identifying malware in real-time, making it
inappropriate for intelligent cars.

Other researchers have relied on dynamic features for
detecting malware [198], [202], [210], [215], [221]. For
instance, the authors of [210], [215] have used dynamic
features such as behavior features, API calls and opcode
sequences for detectingmalware. However, if malware is able
to disguise its behaviors and contents, these approaches may
fail to detect it. In addition, the time it takes these approaches
to respond from data collection to detection generally results
in a largely infected system, making them unsuitable for
use in intelligent cars. Other work by Ghanei et al. [221]
used hardware performance counters as features for detecting
malware. However, in addition to the high detection time and
complex hardware modifications required to detect malware,
this approach is also incapable of detecting malware in real-
time, making it unsuitable for modern cars. A large portion
of existing machine learning-based malware detection tech-
niques relied on hybrid features to detect malware [199],
[200], [203], [205], [206], [208], [210], [211], [213], [215],
[219]. For example, the authors of [199], [200], [203], [205],
[206], [208], [210], [213], [215], [219] have used system
calls, instructions, image features, API calls, data flow, net-
work flow, API call sequences and permissions as features
for detecting malware. However, these methods may be inef-
fective, if malware is able to conceal its harmful actions and
contents, making them inappropriate for modern vehicles.
Other work by Sayadi et al. [211] proposed a novel approach

for detecting malware based on hardware performance coun-
ters. However, this approach is not adaptable for intelligent
vehicles since it requires hardware modifications to be made
into vehicle devices. As a result, the hardware modifications
that will be required formillions of vehicles would be difficult
to implement and might be costly to both vehicle owners and
automakers.

The machine learning-based malware detection technique
provides several advantages over traditional malware detec-
tion techniques, including the ability to detect both known
and unknown malware, and improving the detection accu-
racy. However, it has a lot of limitations when applied to
safeguarding intelligent vehicles. For instance, the machine
learning-based malware detection technique can be deceived
by complex code obfuscation and evasion techniques that
make malware difficult to identify [197]. Furthermore, this
technique needs an abundant amount of data for training. As a
result, it takes a long time to train for this method, rendering it
unsuitable for usage in today’s intelligent vehicles. Addition-
ally, most of the solutions that relied on this technique have
been suggested and tested on datasets and are not suitable for
real-time detection. The non-real-time detection approaches
are inappropriate and ineffective for intelligent cars because
if a vehicle is attacked with malware, the malware must be
identified in real-time in order to ensure the safety of the
driver and passengers.

F. INTRUSION DETECTION SYSTEM
The need for an efficient intrusion detection system (IDS)
for modern vehicles is becoming one of the most essential
security components as these vehicles are exposed to a huge
number of threats. To this end, several IDSs to detect vehi-
cle attacks have been explored in multiple bodies of work.
For example, Lee et al. [107] and song et al. [222] proposed
techniques for detecting an intrusion based on analysis of
the CAN data time interval by monitoring the request time
and response time of the CAN data traffic. Despite these
techniques are lightweight, these techniques have limitations,
especially when in-vehicle environments change frequently,
as they require a lot of data updates. Müter et al. [223], [224]
proposed IDS based on monitoring the state of the CAN
bus traffic and the entropy of in-vehicle networks. Despite
the fact that this technique does not need any hardware
modifications, it is unable to detect irregular message
incoming.

In addition, multiple bodies of work have adopted physical
fingerprinting techniques for IDSs [228], [229], [235]. For
instance, Avatefipour et al. [229] proposed a physical finger-
printing technique based on physical ECU features and the
physical channel features to detect spoofing attacks. How-
ever, this technique can be failed when the channel length is
increased which makes the physical ECU features are negli-
gible. Other work by [228] proposed a clock-based intrusion
detection system (CIDS) for fingerprinting each ECU based
on using the clock skew characteristic of ECUs. Despite the
efficiency of their technique, it is demonstrated that CIDS

162424 VOLUME 9, 2021



A. A. Elkhail et al.: Vehicle Security: Survey of Security Issues and Vulnerabilities, Malware Attacks and Defenses

TABLE 8. Survey of machine learning-based malware detection techniques: Part-1.
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TABLE 9. Survey of machine learning-based malware detection techniques: Part-2.

162426 VOLUME 9, 2021



A. A. Elkhail et al.: Vehicle Security: Survey of Security Issues and Vulnerabilities, Malware Attacks and Defenses

may be defeated by a spoofing attacker who can observe the
clock skew and adjust his transmission accordingly [236].

Additionally, several message authentication techniques
have been explored by researchers to safeguard vehi-
cles against attacks [225]–[227], [237]. For example,
Oguma et al. [237] proposed a novel security architecture
by adding a master ECU to the network in order to verify
other ECUs in the same way as a verification server does.
Groza et al. [227] proposed a broadcast authentication tech-
nique based on time synchronization and key chains. Simi-
larly, work by Lin et al. [226] proposed a message authenti-
cation technique by sending extra messages which prompts
a higher burden on the CAN bus and hence a reduction of
the available bandwidth of the CAN bus. Other work by
Herrewege et al. [225] proposed a message authentication
system for the CAN bus by adding the Hash-based Message
Authentication Code (HMAC) field to the CAN data frame.
Although these approaches improve security, they are inef-
ficient and unsuitable solutions for vehicles since they need
additional resources and sophisticated hardware modifica-
tions to be made in the CAN protocol.

Several methods were recently proposed to detect intru-
sions on the CAN bus based on machine learning tech-
niques [113], [230]–[234], [238], [239]. For instance,
Theissler [231] proposed a novel IDS to detect an anomaly
on CAN bus based on multivariate time series. In order to
identify both known and unknown fault types in various driv-
ing circumstances, an ensemble anomaly detector consisting
of two-class and one-class classifiers was created. How-
ever, this method has drawbacks, particularly when the in-
vehicle environment changes often; these drawbacks might
include the constant requirement for calibration and data
updates. Other work by Barletta et al. [233] proposed an IDS
based on a combination of an unsupervised Kohonen Self-
Organizing Map (SOM) network and k-means algorithm.
The CAN IDs, timestamp, DLC and data field were used
as features in order to identify attack messages sent on the
CANbus.Minawi et al. [232] also suggested an IDS that uses
machine learning and includes crucial warning capabilities
to safeguard vehicle operations. The key features utilized to
evaluate whether the communication was benign or mali-
cious were the CAN ID and the Data field. Furthermore,
Martinelli et al. [230] suggested an IDS based on the eight
data bytes of a CAN packet as the main features for determin-
ing whether a message is benign or malicious. Another study
by Hossain et al. [234] presented an IDS using LSTM deep
learning model-based. For an in-vehicle CAN bus network
attack, the CAN ID, DLC, and data field were exploited as
features. Hanselmann et al. [238] developed an IDS based
on unsupervised neural network architecture to identify intru-
sions and abnormalities on the CAN bus, where the CAN IDs
and timestamps were utilized as features. Additionally, the
authors of [113], [239] proposed a graph-based IDS by con-
verting the CAN bus messages into a temporal graph, then the
machine learning techniques have been used to identify attack
messages sent on the CAN bus. Although the aforementioned

methods improve the vehicle’s security, nevertheless, these
methods are not feasible for a vehicular network due to the
limited computing power of the ECUs to procedure a complex
process.

Table 10 shows a detailed comparison of the IDS-based
solutions. We observe that some of these solutions can detect
any anomalies on CAN bus by using machine learning tech-
nology through different features such as CAN IDs, CAN bus
data field, DLC, timestamp, entropy and graph features [107],
[113], [224], [230]–[234]. The main benefits of these solu-
tions are that they provide high accuracy and low false
positive rates. However, in addition to the high complexity
and high computational time required, these solutions lack
the ability to detect critical attacks such as malware since
these solutions rely on the data link layer and can’t detect
an attack such as malware which relies on the application
layer. Other IDS approaches like [228], [229] can detect
any intrusions on CAN bus by using physical fingerprinting
technique. Although such approaches provide some degree of
security, nevertheless, these approaches are unable to identify
malware attacks that rely on the application layer because
they rely on the physical layer. Other IDS methods such
as [225]–[227] can detect any anomalies on in-vehicle net-
work by adding a message authentication system field to
the CAN bus data frame. Despite these methods provide
high detection rate and improve the vehicle’s security, how-
ever, in addition to the additional resources required and
sophisticated hardware modifications needed, these methods
lack the ability to detect malware attack since they rely on
the data link layer and not rely on the application layer.
In summary, the aforementioned IDS solutions can’t detect
malware attacks at application level and may can detect mal-
ware attacks at either the data link layer or the physical layer
after the actual damage has likely been occurred. Therefore,
in addition to the need for an efficient IDS for intelligent
vehicles at data link and physical layers, an efficient malware
defense system for modern cars at application layer is also
needed.

VI. OPEN ISSUES AND FUTURE DIRECTIONS
In the previous section, we review malware detection
approaches that have been proposed in the last decade based
on the method used, the analysis method used, the target
operating system, the detection and the response times, the
data source, the main benefits and drawbacks of eachmethod.
In this section, we first discuss the limitations of applying
these approaches in securing and protecting the intelligent
vehicles against malware. Second, we discuss the security
requirements that are needed in order to provide a successful
and secure intelligent vehicle system. Finally, we summarize
and discuss open research problems for the scientific commu-
nity to address in order to meet the security requirements that
are needed for a successful and secure intelligent vehicle sys-
tem, and offer some recommendations for developing a more
successful detection schema against malware for intelligent
vehicles.
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TABLE 10. Survey of intrusion detection systems.
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A. EXISTING TECHNIQUES LIMITATIONS IN SECURING
INTELLIGENT VEHICLES AGAINST MALWARE
Despite the fact that malware detection techniques are
improving day over day, the following limitations of applying
these malware detection techniques to intelligent vehicles
remain an unresolved issues.
• All present approaches [120]–[135], [144]–[159],
[163]–[194], [198]–[221] are vulnerable to various types
of obfuscation and evasion techniques as new malware
generations utilize various sorts of obfuscation and eva-
sion techniques to disguise themselves. For example,
some kinds of malware employ throttled execution in
order to evade detection [240], [241]. Malware can use
this technique on vehicles to throttle its execution across
multiple ECUs in order to evade detection. Other forms
of malware take advantage of multi-core processors,
as well as other capabilities like hyper-threading in
order to spread malware activity across several cores
to evade detection, as well as speed up execution to
outrun any preventative measures taken by a victim or
system administrator [242], [243]. Malware also can
use this technique on vehicles to spread its activity
across multiple ECUs’ threads in order to evade detec-
tion. Other sorts of malware can add dummy instruc-
tions to their code to make it look different [244], or
use instruction substitution to change their code by
substituting equivalent instructions for some of them
[245], or use code transposition to reorder the sequence
of instructions in their code [246], or use subroutine
reordering to obfuscate their code by randomly rear-
ranging their subroutines [247]. Consequently, mal-
ware can evade detection and avoid itself from being
properly analyzed by employing such techniques. As
a result, these approaches [120]–[135], [144]–[159],
[163]–[194], [198]–[221] are unsuitable for use in intel-
ligent vehicles due to concerns about passengers safety.

• All of the current approaches [120]–[135], [144]–[159],
[163]–[194], [198]–[221] might fail to detect new mal-
ware generations, as well as sophisticated malware. As
a result, these approaches are inappropriate for use in
intelligent vehicles due to concerns regarding driver
safety and passengers as well. Furthermore, with the
exception of cloud-based approaches, all approaches
cannot be used for intelligent vehicles since they need
to be updated regularly in order to handle any potential
new malware during the vehicle’s long lifespan [136].
Besides, updating them on a regular basis on millions of
vehicles would be difficult to handle and can be costly
for both vehicle owners and automakers. Cloud-based
approaches have an edge over other approaches since all
installations and configurations are updated on a regular
basis in the cloud. Therefore, we believe cloud-based
malware detection will be a feasible solution for safe-
guarding intelligent vehicles against malware attacks in
the future especially with the advent of high speed 5G
technology [20].

• Malware detection in real-time is really challenge.
The majority of malware detection approaches in
the last decade [120]–[135], [144]–[159], [163]–[194],
[198]–[221] have been proposed and validated to detect
malware using datasets and are not suitable for real-
time detection. The issue with these non-real-time
approaches is that they are unsuitable for intelligent
vehicles because if the vehicle is infected with malware,
the malware must be detected in real-time in order to
ensure the safety of the drivers and passengers.

• There is no well-known and widely recognized dataset
that can be used to assess the effectiveness of
malware detection methods [120]–[135], [144]–[159],
[163]–[194], [198]–[221]. Despite the fact that each
malware detection technique has its own set of advan-
tages and disadvantages, however, it is difficult to say
that one ismore effective than the other. This is due to the
fact that eachmalware detection technique uses different
malware and dataset.

• According to our findings, we observe that there are
only two malware detection methods [154], [173] that
can detect malware in real time. However, these meth-
ods [154], [173] need a lot of computational resources,
which make them infeasible for intelligent vehicles due
to the limited computational resources of the ECUs
and CAN bus. Furthermore, these methods [154], [173]
are not cost-efficient and are not adaptable for intelli-
gent vehicles since they need a sophisticated hardware
modifications. As a result, these methods may not be
suitable for resource-constrained in-vehicle devices that
also need to be lightweight.

• All present IDS approaches [107], [113], [224]–[234]
cannot identify malware attacks at the application level,
but theymay detect malware attacks at the data link layer
or physical layer after the actual damage has likely hap-
pened. As a result, in addition to the need for an effective
IDS for intelligent vehicles at the data link and physical
layers, modern cars also require an effective defense
system at the application layer in order to safeguard them
against malware.

B. SECURITY REQUIREMENTS TO SECURING
INTELLIGENT VEHICLES
In this section, we discuss four essential requirements for
securing intelligent vehicles. These are critical security cri-
teria for every communication system. These requirements
are authentication, integrity, privacy, and availability. Each
requirement is presented below along with its description.

1) AUTHENTICATION
It means that the access to any information or vehicle’s data
must be given to the only authorized users and parties. By giv-
ing authorization to specific users and parties to access any
information or vehicle’s data, malware attacks and unautho-
rized manipulations can be prevented from happening. In this
way, vehicle’s network system can be more protected by only
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giving authorization to a certain users and parties. The key
management and distribution must be efficient and accurate
in order to meet this requirement [248].

2) INTEGRITY
It is referred to the validity of data between the sender and
the recipient of a communication system. The most basic
criterion of communication system integrity is that the data
received is correct and not tampered with intentionally. It is
important to check the honesty of the message that is being
sent in the vehicle’s network system. The message has to
get validated to make sure that it hasn’t been manipulated
or corrupted by a malware, or some other factors such as
noise and fading. Error detection and correction codes must
be developed to ensure the integrity of any communication
system [248].

3) PRIVACY
Intelligent vehicles tend to share information with each other
(such as Vehicle-to-Vehicle communication) and between the
surrounding infrastructure (Vehicle-to-Infrastructure com-
munication) [249]. Therefore, privacy plays a big factor in
this role to protect vehicle’s information from being used to
do unauthorized behaviors such as using the information to
spy on vehicles and access its private data [38].

4) AVAILABILITY
It is referred to the fact that authorized users have access to the
systems and resources they need. Improving the chances of all
targeted vehicles receiving information is critical in vehicular
networks. Continuous availability is tough to accomplish
under normal working settings, and it gets more and more
challenging when updates and patches are required at various
points. It is critical that network activities continue and that
the cars remain unaffected. The availability of services at all
times is critical. As a result, the needed redundancy for this
purpose must be appropriately implemented [250].

C. RECOMMENDATIONS AND FUTURE DIRECTIONS
One of the biggest challenges that automakers face is find-
ing solutions against malware attacks and creating a full
immunity system to combat this threat. Although the existing
defenses are some of the most effective approaches of build-
ing structural defenses against malware attacks, there are still
some challenges and issues that need further investigation
and study. There are additional potential solutions that could
be implemented to provide a great protection and immunity
against malware attacks. Some additional potential solutions
and directions that will enhance intelligent vehicles’ security
that need to be addressed to meet the security requirements
to securing intelligent vehicles are presented below.

1) AUTHENTICATION SYSTEM USING Li-Fi TECHNOLOGY
A lightweight cryptographic authentication system if imple-
mented would boost security in intelligent vehicles. This
would provide a secure, efficient and flexible method

that is able to handle complicated transportation circum-
stances [251]. The main idea of creating a lightweight crypto-
graphic authentication system has been in key extraction, key
establishment and key distribution. Major milestones have
been achieved in protocols such as key extraction using wire-
less fading channels [252], key establishment using keyless
cryptography technology [253] and key distribution using the
Light fidelity (Li-Fi) [254]. It has been proven that Li-Fi tech-
nology can accomplish high-speed wireless communication
of over 3 Gb/s compared to Wi-Fi. Furthermore, Li-Fi tech-
nology further provides security by avoiding interception and
eavesdropping. For these reasons, there has been increased
interest in integrating Li-Fi technology in intelligent vehicles
design to be used for authentication system in intelligent
vehicles [254]. Alongside with implementing authentication
system, security criteria must be met in order to provide a
successful and secure protection to the vehicle’s system.

2) FIREWALL SYSTEM
Although malware attacks can be destructive to intelligent
vehicles with its different entry points, there are many ways
that can be implemented to defend against malware attacks.
Intelligent vehicle’s system tends to receive updates more
often. Therefore, the liability of the source that is sending that
information must be checked to make sure malware doesn’t
get injected in the intelligent vehicle’s network. A network
security device such as firewall should be implemented to
monitor and block unwanted data [255]. The firewall’s main
purpose is to filter any data that enters the system and rejects
malware attack vectors that have been recognized as a threat.
Alongside with applying a network security device, security
requirements need to be satisfied in order to provide a suc-
cessful and secure protection to the vehicle’s system.

3) DEEP LEARNING USING OFFLOADING COMPUTATION
MECHANISM
Intelligent deep learning such as neural networks technol-
ogy is a great way to detect vulnerabilities and eliminate
malware attacks in intelligent vehicle systems. Because the
fact that this technology is more accurate and performs better
than machine learning technology in malware detection, it is
worth considering this advanced technological approach for
intelligent vehicle systems [256]. Deep learning, on the other
hand, requires a lot of computing resources and capabilities
in the vehicle’s ECUs, which leads to memory overloading
for deep learning implementation in ECUs owing to the
vehicle’s ECUs’ limited computation resources. However,
the offloading computation mechanism was found to be a
possible solution to solve the limited computation resources
of the vehicle’s ECUs by transferring the resource inten-
sive computational tasks to a separate processor such as an
external platform, a hardware accelerator, a cluster, grid,
or cloud server at the network edge [257]. The future of
intelligent vehicles is quite promising with deep learning
using offloading computation mechanism towards faster and
secure vehicle system.
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4) SOFTWARE DEFINED SECURITY
Intelligent vehicles need to be able to detect malware attacks
efficiently and effectively. Therefore, the software defined
security system can be a reliable solution to detect and elim-
inate malware threats and further improves network security
for intelligent vehicles by forwarding the security threats
characteristics and traffic parameters for forensic analysis.
The software defined security is referred to the use of soft-
ware defined platforms to automate threat detection and
mitigation. This can be accomplished by adopting an open
flow protocol, Network Function Virtualization (NFV) and
Software-Defined Networking (SDN) that uses multi-layered
open virtual switch with programmatic extension principle
that allows automation of threat detection and elimination on
a bigger scale [258]. This form of dynamic solution to threats
will provide security for intelligent vehicles against malware
attacks.

5) CLOUD-BASED SOLUTION USING 5G TECHNOLOGY
It is another potential future route for intelligent vehicles
since it offers several advantages, such as simple access, on-
demand storage, and lower pricing. Furthermore, installa-
tions, settings, and setups are all updated on a regular basis
with this method. It also can improve the malware detection
performance of the intelligent vehicle’s system with large
malware datasets and ponderous computing resources. It also
can fix the resources allocation issues of intelligent vehicle’s
system by storing the data acquired at each ECU in cloud,
the training and testing can be performed also on cloud to see
whether the data is authentic or not. This solution of sending
data to the cloud would have been impractical few years
ago since the internet connection was not fast and always
available, but with the advent of high speed 5G [20], it is
now practical to store data in cloud. The future of intelligent
vehicles looks bright, thanks to cloud solutions that leverage
5G technology to create a quicker and more secure vehicle
system.

VII. CONCLUSION
In this paper, we first present a great depth description of the
architecture of intelligent vehicles. We also identify the secu-
rity issues and vulnerabilities of intelligent vehicles in order
to illustrate the lack of protection against malware attacks.
Furthermore, this paper discusses the most common types
of malware that might infiltrate intelligent vehicles to show
how each type of malware could be different than another.
Additionally, different entry points for malware to infect
intelligent vehicles were covered in this paper to emphasize
the importance of protecting those aspects. A comprehensive
survey of malware detection techniques is also discussed
and further categorized into five categories, i.e. signature-
based malware detection techniques, behavior-based mal-
ware detection techniques, heuristic-based malware detection
techniques, cloud-based malware detection techniques, and
machine learning-based malware detection techniques. Each
of these techniques has certain advantages and disadvantages,
we discussed the advantages and disadvantages of each

technique. Finally, a future direction is provided to further
improve the immunity for the system of intelligent vehicles
to protect it against malware attacks.
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