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Abstract—Hardware security has recently re-surfaced as a first-order concern to the confidentiality protections of computing systems.
Meltdown and Spectre introduced a new class of exploits which leverage transient state as an attack surface and have revealed
fundamental security vulnerabilities of speculative execution in high-performance processors. These attacks derive benefit from the fact
that, during speculative execution, programs may execute instructions outside their legal control flows. This insight is then utilized for
gaining access to restricted data and exfiltrating it by means of a covert channel.
This study presents a microarchitectural mitigation technique for shielding transient state from covert channels during speculative
execution. Unlike prior work that has focused on closing individual covert channels used to leak sensitive information, this approach
prevents the use of speculative data by downstream instructions until doing so is determined to be safe. This eliminates transient
execution attacks at a cost of 18% average performance degradation.
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1 INTRODUCTION

Speculative execution has been used for decades to expose
instruction level parallelism and increase performance. Unfor-
tunately, the recent Meltdown and Spectre [1], [2] attacks have
uncovered fundamental security vulnerabilities in how modern
processors implement speculative execution. These attacks can
generally be broken down into two phases.

First, speculation allows applications to execute instructions
that are not part of their legal control flow. When a mis-
prediction is detected the processor discards any erroneous
instructions and continues execution. However, instructions
outside the legal control flow can retrieve secret data that is
otherwise inaccessible to the application (e.g. data belonging
to a privileged process or data normally protected by the
application’s control flow, such as array boundary checks).

The second phase of these attacks involves using a covert
channel to leak the secret obtained during the first phase.
Covert timing channels consist of a trojan process (transmitter)
which intentionally modulates the timing of a shared system
resource to illegitimately reveal sensitive information to a spy
process (receiver). The trojan and spy do not communicate
explicitly, but covertly by observing the timing of certain events
with respect to the shared resource. Although cache-based
covert channels were used in the Spectre and Meltdown attacks,
several other channels are available to an attacker.

Prior hardware-based mitigation solutions have focused on
closing or removing the viability of specific covert channels, in
most cases the cache [3], [4], [5], [6]. However, as some chan-
nels are closed, new ones are discovered [7], making channel-
specific solutions less effective. Our approach takes the first
steps towards a more general solution.

This study proposes a mechanism for shielding speculative
data that may be obtained during the first phase of the attack
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from any possible covert channels. This is accomplished by
blocking the use of speculative data by all dependent instruc-
tions until the source instruction is determined to be safe.
This design is more general, less complex and with a similar
performance impact as other existing hardware solutions.

To the best of our knowledge, this is the first work that has
addressed the root cause of transient execution attacks: namely,
the propagation of speculative data to downstream instructions
that form the transmitter-side of a covert channel.

2 BACKGROUND AND RELATED WORK

A comprehensive summary of known transient execution at-
tacks and defenses can be found in [8]. We briefly present
Spectre-v1 (bounds-check-bypass) as an illustrating example.
Listing 1 shows the code of the transmitter gadget from that
attack. An attacker first trains the branch predictor to ensure
a missprediction when x > lenb. Execution continues down
the misspredicted path and a restricted value is accessed by
the memory reference b[x]. Even though the secret data has
been accessed, it will be cleared out of the architectural state
of the system when the missprediction is identified. Before that
happens, however, the secret can be leaked through a cache side
channel.

This is accomplished by using a technique, such as
Flush+Reload [9] or Prime+Probe [10], to set the cached con-
tents of array a into a known state, where a is a shared
resource acting as the covert channel. The secret accessed by
the memory reference b[x] is then used to access a location
in array a that is dependent on the restricted value, leaving
a secret-dependent footprint in the cache. The attacker probes
each cache line containing a and infers the secret value from the
index exhibiting an anomaly in access time relative to the other
indices. In Flush+Reload, the secret data would correspond to
the array index with the lowest access latency.

1 if (x < lenb)
2 y = a[b[x] * 512];

Listing 1: C++ Spectre-v1 transmitter gadget.
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Multiple hardware defenses against transient execution at-
tacks have recently been proposed, but each has limitations. In-
visispec [3] proposes introducing shadow structures for caches
to remove the side-effects of speculative execution from ob-
servation. DAWG [5] proposes adding protection domains to
caches. Conditional Speculation [6] protects the data cache
from leakage by blocking memory requests in the issue queue
until they are known to not have been misspeculated. These
approaches have only considered attack variants utilizing the
cache as a covert channel, and have non-trivial complexity
because they affect memory consistency and cache coherence.
Context-sensitive fencing [11] provides a mechanism for au-
tomatically inserting fences into the instruction stream when
malicious gadgets are dynamically detected with taint-tracking,
requiring non-trivial tracking and recovery overheads.

Currently, there has been no solution that is covert-channel
agnostic.

3 THREAT MODEL

In this work we address both Spectre and Meltdown-class tran-
sient execution attacks. We consider attackers targeting secret
data residing in the memory hierarchy, and which may use
any micro-architectural structure as a transmission medium–
including caches, TLBs, FP units, execution ports, etc. Figure 1
conceptualizes the access path to secret data (shown in red), as
well as the covert channels on a modern core microarchitecture
(shown in blue).

Out of the scope of this work are attack scenarios in which
secret data resides in a register that was preloaded through
legal control flow (and non-excepting loads) and subsequently
leaked through a side or covert channel. We also do not
consider attacks targeting privileged registers such as Spectre
Variant 3a (Rogue System Register Read) or registers with stale
data that might not have been sanitized following a context
switch such as the LazyFP attack. These attacks have been
addressed through other mechanisms and represent a much
smaller attack surface compared to attacks that can access
arbitrary memory locations.

4 MITIGATION DESIGN

Key to our approach is the observation that, by definition, the
leakage source (covert channel) has a data-dependence on the
secret value, as can be seen in the example in Listing 1. The
access into array a is dependent on the secret value referenced
by b[x]. These two memory references form the transmitter-
side of the covert channel and must both be executed spec-
ulatively, before the misspeculated instructions are squashed.
Therefore, if we can delay the forwarding of data to dependent
instructions until we can confirm the producing instruction is
no longer speculative, we can inhibit leakage and restrict the
formation of the transmitter. This effectively removes the ability
to construct any covert channel that can leak this data.

To accomplish this goal we change the timing of when
speculative data loaded into the processor’s pipeline can be
used by dependent instructions. Figure 1 shows a high-level
view of how this integrates into a processor’s pipeline design.

4.1 A Conservative Approach
The most conservative design delays the forwarding of data
returned by a speculative Load instruction until it reaches the
head of the reorder buffer (ROB) and is ready to commit. Figure
2 illustrates the ROB for an example with a LD instruction
followed by two dependent instructions (ADD and SUB). Figure
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Fig. 1: Isolating speculative data from covert channels used to
leak secret information.
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Fig. 2: Delays the forwarding of data loaded from memory
location mem(D) into register r1 (a) until the LD instruction
is ready to commit (b).

2(a) illustrates the cycle in which the LD receives the requested
data from memory. Normally the value of mem(D) would be
forwarded to all dependent instructions as well as stored in
physical register r1.

When the LD data returns, the state of its ROB entry is
checked. If it is not at the head of the ROB, the result of the LD
will silently update the physical register corresponding to r1,
but it will not broadcast the data on the result bus to dependent
instructions. Since the physical register is assigned to r1, it
will not be recycled until the LD instruction retires. Also, the
LD will not be marked as complete, forcing any r1-dependent
instructions added to the ROB after the LD returns to wait.

When the LD is ready to commit, its data is read from
the physical register and broadcast to dependent instructions
(Figure 2 (b)). At that point the LD is guaranteed to no longer
be speculative. This ensures that no speculative data will be
manipulated by any other instruction that could potentially
leak information.

The wakeup/select logic has to be modified to consider all
LD instructions as high (and variable) latency instructions. As
a result, no LD-dependent instructions will be woken up when
the LD is dispatched. Figure 3 shows the timing of the typical
wakeup/select stages in the pipeline and the changes made to
delay the wakeup of dependent instructions until the result of
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Baseline Wakeup/Select/Execute/Retire Pipeline
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Fig. 3: Baseline design (a) and changes (b) to the timing of the
wakeup/select pipeline to delay the broadcast of speculative
LD results.

the LD is rebroadcast before retirement.
This approach is straightforward to implement in hard-

ware requiring minimal changes to existing designs. However,
delaying all instructions dependent on speculative loads by
dozens or potentially hundreds of cycles leads to a significant
performance impact, as will be shown in Section 5.

4.2 Early Resolution of Speculative Instructions
In order to address the performance impact of the previous
approach, we develop a mechanism for early detection of non-
misspeculated loads that allows their results to be forwarded
earlier to dependent instructions. We define an Early Resolution
Point (ERP) in the ROB as the eldest in-flight instruction in
program order for which the following conditions are satisfied:

1) All older branch instructions (in program order) have
been resolved and their actual direction is known.

2) All older loads and stores have had their address com-
puted, and a TLB translation has been performed.

3) No branch missprediction or memory access exception
has been raised by either of the above instruction types.

As a result of these conditions, all instructions between the
head of the ROB and the ERP can be considered safe or resolved
with respect to their ability to speculatively access data outside
their legal control flow.

Figure 4 shows two snapshots of the ROB content and the
position of the ERP. In Figure 4(a), the ERP is below the BR<c1>
instruction. This means that all Branch and Load instructions
between the ERP and the ROB head have been resolved and are
neither misspeculated nor have they raised an exception. The
BR<c1> instruction, on the other hand, has not been resolved,
thus preventing the ERP from moving upwards.

This enhanced scheme allows the immediate forwarding
of results for all the Load instructions that are older than the
ERP and can therefore be considered safe. The result of the
LD r1, mem(A) instruction can immediately be forwarded to
its dependent instructions, which in this example is the ADD
instruction. This allows Load results to be forwarded much
earlier than in the previous approach, which restricts all Loads
to wait until commit. All other Loads that are above the ERP
(e.g LD r2, mem(B) in Figure 4) will continue to delay the
forwarding of their results until they reach the ERP.

A new ER status bit associated with each ROB entry in-
dicates whether the instruction has been early resolved or not.
When a Load returns the ER bit is checked. If it is ”1” the result
is immediately broadcast on the result bus to all dependents. If
it is not set, the destination register of the LD is silently updated.
A forward pending (FP) bit is set in that LD’s ROB entry. When
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Fig. 4: The performance enhanced approach only delays the
forwarding of data loaded from memory location mem(D) into
register r1 (a) until the LD instruction is ready to commit (b).

the Load is early resolved the FP bit is checked. If it is set, the
result of the Load will be rebroadcast to dependent instructions.

Even though this scheme is significantly less conservative
compared to the previous one, it does not meaningfully relax its
security properties. Only allowing data loaded by instructions
within the Early Resolution window (highlighted in gray in
Figure 4) to be forwarded to dependents prevents any spec-
ulative data from being accessed by any other instruction in
the pipeline. While it is possible for the instructions now
considered safe (below the ERP) to experience other types of
exceptions or interrupts, prior work has shown these to be
ineffective in facilitating transient execution attacks [8].

5 EVALUATION

5.1 Methodology
We used the gem5 cycle-level simulator in full-system mode,
running a Linux operating system and modified out-of-order
CPU model to implement the designs. Our simulations were
run with an Ubuntu 14.04 disk image, Linux v4.18.7 kernel and
x86 ISA. Table 1 shows the CPU and cache parameters used.
Results presented are from simulation runs consisting of a 1B
instruction warm-up period, followed by 500M instructions.

Workloads used in the evaluation were selected from the
SPEC2006 benchmark suite to represent a diverse mix of in-
teger and floating-point applications with both memory and
compute-bound characteristics, using the reference input set.

CPU Architecture
CPU Clock 2GHz LSQ Entries 32
L1 ICache 32KB (4-way) IQ Entries 64
L1 DCache 32KB (8-way) BTB Entries 4096
L2 Cache 2MB (16-way) dTLB Entries 64
Issue Width 8 iTLB Entries 64
ROB Entries 192 FP Registers 256
Branch Predictor LTAGE Int Registers 256

TABLE 1: Architectural configuration parameters.

5.2 Security Analysis
To analyze the effectiveness of both schemes in preventing
leakage through covert channels we simulated proof-of-concept
Spectre-v1 code in gem5, similar to the code shown in Listing
1. Flush+Reload was used to recover the secret. Figure 5 shows
the empirical results averaged over 100 trials. In theory, the
secret value will have the lowest access latency of any index
in the array, enabling us to decode its value. The secret value
is one byte wide, therefore the array must have 256 indices
to represent every possible value. The top of Figure 5 shows
the unsecure baseline. We can see that there is only one index
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Fig. 6: Performance impact of both schemes.

with an access latency less than 175 cycles; indeed, this index
corresponds to the correct secret value extracted from the victim
process (0x54).

However, both the conservative and enhanced schemes do
not exhibit such an outlier, as shown in the bottom of Figure
5. This shows that our mitigation techniques are effective in
shielding speculative data from the covert channel.

5.3 Performance Impact
The performance impact of both schemes, relative to the base-
line system is shown in Figure 6. As expected, the more
conservative mechanism results in a relatively large runtime
increase, which averages at 55%. This is due to the fact that
each Load instruction must wait until it reaches commit before
it is permitted to forward its data, which could leave dependent
instructions stalled for dozens or even hundreds of cycles.

The performance hit is worse for benchmarks that have
relatively low miss rates such as hmmer, tonto or gromacs. For
instance, hmmer has less than 10 misses per 1K instructions.
Since for these applications most Loads are hits, delaying
their resolution to commit has the highest performance impact.
Applications with high miss rates (especially LLC misses) such
as lbm or mcf exhibit a lower performance impact because Load
misses already stall the pipeline considerably.

5.3.1 Impact of Early Resolution
In order to evaluate the opportunity created by the early res-
olution of instructions, we measure the distance in number of
instructions from the ERP to the head of the ROB (commit
point). This data is shown in Figure 7 as a per benchmark
average. This metric allows us to quantify the opportunity for
earlier forwarding of Load results.

The hmmer benchmark illustrates well how early resolution
can translate into performance improvement. hmmer has the
worst performance hit from the conservative design, at a 3.1×
slowdown. However, hmmer also has a relatively large ERP to
commit distance of 36 instructions, which can be interpreted to
mean that, on average, 36 of the instructions in the ROB have
reached the ERP and would be allowed to forward their results–
potentially a significant performance improvement. This is
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Fig. 7: Average number of ROB entries from ERP to commit.

corroborated by the results in Figure 6, where we see that the
runtime for hmmer with SpecShieldERP is only 30% longer than
the baseline.

On the other hand, some benchmarks such as mcf and
astar exhibit a short ERP-to-commit distance of only 4 and 3
instructions, respectively. As a result, they benefit less from ERP
monitoring compared to other benchmarks, but still exhibit a
17% and 8% performance improvement, respectively.

Overall, the performance benefits of the ERP-based design
are substantial, reducing the performance penalty to an average
of 18% across all applications we examine, compared to 55% for
the conservative design.

6 CONCLUSION

Transient execution attacks have revealed fundamental weak-
nesses in how modern processors handle speculative data. This
study presents a first step towards isolating speculative data
from all covert channels that could be used to leak secret
information, at a cost of 18% average performance degradation.
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