
Authenticache: Harnessing Cache ECC
for System Authentication∗

Anys Bacha
Computer Science and Engineering

The Ohio State University
bacha@cse.ohio-state.edu

Radu Teodorescu
Computer Science and Engineering

The Ohio State University
teodores@cse.ohio-state.edu

ABSTRACT
Hardware-assisted security is emerging as a promising av-
enue for protecting computer systems. Hardware based
solutions, such as Physical Unclonable Functions (PUF),
enable system authentication by relying on the physical
attributes of the silicon to serve as fingerprints. A variety
of PUF designs have been proposed by researchers, with
some gaining commercial success. Virtually all of these
systems require dedicated PUF hardware to be built
into the processor or System-on-Chip (SoC), increasing
the cost of deployment in the field.

This paper presents Authenticache, a novel, low-cost
PUF design that does not require dedicated hardware
support. Instead, it leverages on-chip error correction
logic already built into many processor caches. As a
result, Authenticache can be deployed and used by many
off-the-shelf processors with minimal costs. We proto-
type, evaluate, and test the design on a real system, in
addition to conducting extensive simulations. We find
Authenticache to have high identifiability, as well as
excellent resilience to measurement and environmental
noise. Authenticache can withstand up to 142% of noise
while maintaining a misidentification rate that is below
1 ppm.

1. INTRODUCTION
Security has become a critical design factor for com-

puting systems today. As more of our personal data is
collected, created, and consumed through interconnected
devices, information security is becoming increasingly
important. The rapid growth in mobile and wearable
technology is driving the need for scalable designs that
can autonomously safeguard digital content.

The mobility of today’s computing devices makes them

∗This work was supported in part by HP and the National
Science Foundation under grant CCF-1253933.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MICRO-48, December 05-09, 2015, Waikiki, HI, USA
Copyright 2015 ACM. ISBN 978-1-4503-4034-2/15/12 ...$15.00
http://dx.doi.org/10.1145/2830772.2830814

vulnerable to theft and tampering. Furthermore, the
most ubiquitous form of secure transactions is marked
by the generation and protection of private keys that can
be used for encryption and authentication. As a result,
the safeguarding of such keys represents an essential
component of system security. Software-only security
solutions may prove insufficient in preventing physical
access attacks where partial information is maliciously
recovered to reconstruct private keys.

In response to these challenges, researchers have pro-
posed Physical Unclonable Functions (PUF), a security
feature that intrinsically binds private keys to the phys-
ical attributes of the system. Silicon embedded PUFs
share similarities with biometrics used for human identi-
fication in the sense that they possess fingerprints. They
span a multitude of applications, including counterfeit
detection, cryptographic key generation, memoryless key
storage, and system authentication [1, 2, 3, 4, 5]. These
designs exploit randomness caused by process variation
in deep submicron silicon and are generally deployed in
environments that use challenge-response pairs (CRP)
for authentication. The mapping between challenges
and responses is deemed difficult to reverse engineer
since the relationship is governed by random physical
properties.

A significant body of research has explored various
forms of low-cost identification designs through silicon
PUFs. For example, Lee et al. [6] proposed a circuit
that arbitrates between a set of signals that traverse
through a maze of cascaded switch blocks. Although
the traversed paths are symmetrical by design, varia-
tion in the manufacturing process renders some paths
faster than others. This forms the basis for generating a
random output that is difficult to predict. Other delay-
based designs [2, 7] compare the relative speed of ring
oscillators in pairs using counters. The outcome of these
tests vary from chip to chip due to process variation.
Other techniques entail extracting randomness inherent
in memory devices by examining default power-on states
[8, 9] and inducing timing violations [10, 11].

Virtually all prior work we are aware of on silicon
PUFs requires dedicated circuitry to be added to the
processor, including custom made memory blocks [8,
9], arbitration logic [6], circuit delay monitors [2, 7],
or support for special memory access modes [10]. The
need for custom hardware support to enable security

can hinder the widespread adoption of PUFs, especially
in mobile processors which have fast development cycles
and relatively low profit margins.

In this paper we present Authenticache, a novel low-
cost PUF design that does not require dedicated hard-
ware support. Instead, it leverages on-chip error cor-
rection logic already built into the caches of modern
processors. As a result, it can be deployed and used by
many off-the-shelf processors with minimal cost.

Authenticache lowers the supply voltage of the chip
to a level where on-chip caches exhibit errors that are
corrected by the ECC logic. The inherently random
distribution of these errors is used as the silicon-based
fingerprint in our PUF design. Our solution relies on
the observation presented in prior work [12, 13], that at
low voltages, caches exhibit correctable errors that are
randomly distributed and persistent. The random dis-
tribution means that different caches will exhibit errors
in different lines. Within any given chip, the errors are
persistent in the sense that, with high probability, the
same lines will fail while under stress.

Authenticache associates the error distribution with
an error map. Each point in the map is assigned a binary
value where the cache lines that contain errors are set to
“1” while the error free lines are cleared to “0.” Starting
from this map, Authenticache uses a challenge-response
system to enable a large number of distinct challenges.

We demonstrate the robustness of Authenticache with
a proof-of-concept prototype implementation, as well
as extensive Monte Carlo simulations. Hardware-based
PUFs are vulnerable to a combination of measurement
error caused by noise, temperature variation, and cir-
cuit aging. Our evaluation shows that Authenticache
is resilient to such perturbations and can tolerate up
to 142% noise introduced into the system while main-
taining a misidentification rate that is below 1 parts per
million (ppm). It has near ideal uniqueness across a
distribution of chips with an average inter-die variation
of 49%. Finally, even without reusing authentication
challenges, Authenticache can accommodate an average
of 4.3K authentications per day over a 10 year lifespan
when using a 4MB cache.

Overall, this paper makes the following contributions:

• Presents a novel security system that uses processor
caches as Physical Unclonable Functions.
• Introduces a novel challenge-response design that

employs error distributions to enable a large num-
ber of challenges with high noise resilience.
• Conducts a proof-of-concept implementation of Au-

thenticache in firmware running on real hardware.
• Makes the observation that cache error maps can be

dynamically constructed to serve as silicon-based
fingerprints.
• Characterizes the robustness of the technique against

environmental noise.

The rest of this paper is organized as follows: Section
2 provides background information. Section 3 character-
izes correctable errors in caches using experimental data
from real hardware. Section 4 presents the design and

algorithm for the proposed authentication system. Sec-
tion 5 describes the Authenticache prototype. Section 6
presents the results of our evaluation. Section 7 details
related work; and Section 8 concludes.

2. PUF BACKGROUND AND METRICS

2.1 PUF System Authentication
System identification marks one of the primary PUF

applications [1, 2, 3]. PUFs can be deployed as a replace-
ment for password-based authentication between a client
and a server. Client devices with integrated PUF hard-
ware undergo an enrollment phase after manufacturing.
During enrollment, a large number of challenge-response
pairs (CRP) are gathered for each client by characteriz-
ing their PUF responses to multiple stimuli (challenges).
These CRPs are collected and stored in a secure database
that will assume the role of an authenticating server.
Once the manufactured devices complete enrollment,
they become eligible for authentication in the field.

The authentication process begins with a client issu-
ing a request to the server. The authenticating server
responds by randomly selecting a challenge from its
database and sending it back to the client. At this point,
the client runs the received challenge through its PUF
and responds with the extracted output. The server ver-
ifies the client’s response against its database and grants
access upon a match. The strength of the aforemen-
tioned protocol can be improved by embedding multiple
challenges within the same authentication transaction
as needed.

2.2 PUF Quality Metrics
Authenticache was designed using quality goals com-

monly referenced in prior work [14, 15, 16, 17] for eval-
uating PUF designs. These include metrics such as
uniqueness, reliability, identifiability, uniformity, and
bit-aliasing. We provide a high level overview of these
metrics and highlight their importance.

2.2.1 Uniqueness
This metric evaluates the PUF’s ability to uniquely

identify a chip in a distribution of k chips. In other
words, it captures the likelihood of mistaking one PUF’s
response for another’s. This is measured as the inter-chip
variation of different responses using equation (1).

Uniqueness =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

ri ⊕ rj
n

× 100% (1)

The equation computes the hamming distance between
a pair of n-bit responses ri and rj that are extracted
from chips i and j such that i 6= j. The ideal value for
this metric is 50%.

2.2.2 Reliability
Practical PUF designs must account for measurement

and environmental noise that can affect the quality of
the hardware’s response. Noise can cause bits within

the CRP response to be incorrect. The reliability metric
estimates the susceptibility of a PUF to such conditions
by comparing n-bit responses ri and r′i for a given chal-
lenge C. The responses ri and r′i are obtained under
ideal and noisy operating conditions respectively from
the same chip i. The reliability information is computed
over m challenge samples to denote the intra-chip varia-
tion where e represents the e-th sample. The ideal value
for the reliability metric is 100%.

Reliability = 100%− 1

m

m∑
e=1

ri ⊕ r′i,e
n

× 100% (2)

2.2.3 Identifiability
The identifiability property measures the ability of a

PUF to correctly identify valid responses. PUFs compen-
sate for noise by using an identification threshold that
specifies how many bits in a response can be different
from the expected result before it is considered invalid.
Exposing a PUF to noise creates a distribution of intra-
die hamming distances between possible responses and
correct ones. Ensuring high identifiability requires re-
ducing the overlap between this intra-die distribution
and the inter-die distribution for random responses.

The selection of the identification threshold requires
balancing between two criteria. On one hand, the thresh-
old must reduce False Rejections (rejection of valid re-
sponses) while accounting for noise. On the other, it
must remain relatively low such that it doesn’t introduce
False Acceptances of invalid responses. As a result, the
appropriate identification threshold tid is determined
such that the False Acceptance Rate (FAR) and False
Rejection Rate (FRR) components are minimized [18].
FAR and FRR are computed using a cumulative bino-
mial distribution function Fbino as shown in equations
(3) and (4).

FAR(tid) = Fbino(tid;n, pinter) (3)

FRR(tid) = 1− Fbino(tid;n, pintra) (4)

In these equations n is the number of bits in a CRP while
pintra and pinter represent the intra-distance and inter-
distance binomial probabilities respectively. A common
method for minimizing the FAR and FRR components
is to select a threshold that corresponds to the Equal
Error Rate (ERR) at which FAR is approximately equal
to FRR.

2.2.4 Uniformity
Uniformity measures the randomness of PUF responses

for a given chip i. It is estimated by examining the distri-
bution of 0’s and 1’s across a sample of n-bit responses.
This is illustrated in equation (5).

Uniformity(i) =
1

n

n∑
j=1

ri,j × 100% (5)

The ideal value for uniformity is 50% which means there
is no bias towards certain values that may make the
PUF vulnerable to model building attacks.

2.2.5 Bit-aliasing
Bit-aliasing is similar to the uniformity metric. It

estimates the predictability of a response by measuring
the bias of a given bit position across a distribution of
k chips. This is expressed in equation (6). Similar to
uniformity, the ideal value for bit-aliasing is 50%, which
implies there is no bias towards 0’s or 1’s in any of the
CRP’s bits.

Bit− aliasing(j) =
1

k

k∑
i=1

ri,j × 100% (6)

In addition to the aforementioned metrics, PUFs that
are designed for system authentication must fulfill other
characteristics. They must have the ability to generate
a large number of unique CRPs to prevent exploits
where snooped transactions are maliciously replayed for
authentication purposes. As a result, CRPs are generally
employed only once to minimize the susceptibility to
such attacks. Furthermore, responses that are sourced
from a PUF must not disclose information about the
internal layout of the device. This is important for
protection against model building attacks.

3. CORRECTABLE ERRORS IN CACHES
Caches are among the most vulnerable on-chip struc-

tures [19, 20, 21, 22, 23]. They are optimized for density
and therefore use the smallest transistors available in a
given technology to promote large on-die storage capaci-
ties. SRAM designs rely on balanced device parameters
to ensure stable operation. This stability is undermined
by variation in the manufacturing process that leads
to various parametric failures as a result of transistor
strength mismatches within SRAM cells. The distri-
bution of such failures conforms to process variation
effects that are dominated by random phenomena such
as fluctuations in transistor dopant density. This causes
a random distribution of errors, making them suitable
for PUF applications.

Authenticache uses the pattern of errors found in
on-chip caches at low voltages as a basis for its PUF
implementation. Prior work [12, 13] has shown that
these errors can be triggered by lowering the chip’s
supply voltage at constant frequency. These errors are
flagged and corrected by the on-chip ECC hardware.
The locations of these errors are logged by the processor
and can be accessed by software in many systems.

In order to characterize the errors in on-chip caches,
we conducted experiments on a hardware platform that
uses an Intel Itanium II 9560 processor [24] similar to
the one used in [12]. The supply voltage (Vdd) of the
cache was gradually lowered from a nominal setting (≈
0.8V) while it ran a built-in self-test meant to test each
line in the processor’s L2 caches. We combined these
L2’s to construct a 4MB cache similar to what can be
found in mobile processors, such as Apple’s A8 [25].

 0

 20

 40

 60

 80

 100

 120

0 -10 -20 -30 -40 -50 -60

C
a

c
h

e
 L

in
e

s

Relative Correctable Error Range (mV)

Cache Lines vs. Voltage

Figure 1: Number of distinct cache lines that trigger
correctable errors as a function of voltage relative to the
Vdd of the first correctable error (Vcorr) in a 4MB cache.

Figure 1 shows the relative supply voltage range over
which cache lines exhibit correctable errors. We can see
that once the Vdd crosses the correctable error range
starting with Vcorr, the number of unique cache lines
reporting correctable events increases steadily to 122
over a 65mV reduction in Vdd. This corresponds to an
average rate of 2 cache lines/mV. We note that these are
benign errors that are corrected by the ECC hardware
and do not affect the correct execution of the system.
We show that this number of errors is sufficient to build
PUFs that can generate a large number of CRPs as well
as being resilient to noise.

Figure 2 shows how the errors are distributed in a 4MB
cache. We can see that the distribution is uniform across
all cache sets and ways. Our experiments also confirm
that the errors are randomly distributed across different
caches. Figure 3 illustrates the overlap in correctable
error locations across eight different core caches (768KB
each). We observe that even after superimposing the
error locations from the eight different caches, only six
addresses are repeated. We find that each one of these
duplicated lines overlaps with a similar location in just
one other cache.

To quantify the applicability of this data to Authen-
ticache’s challenge-response design, we conducted ex-
periments using L2 caches of the same processor to
determine the inter-die and intra-die components on
hardware. We computed the inter-die distribution of
64-bit responses across the eight core caches consisting
of the error locations shown in Figure 3. We found the
inter-die distribution in this case to be approximately
44% (6% within the ideal value of 50%). We attribute
this relative skew of the inter-die component from the
ideal case to possible systematic process variation effects
in addition to the small sample size.

Intra-die variation in responses to the same challenge
captures the effects of noise on PUF reliability. To in-
duce high levels of noise we conducted experiments at
two different temperatures: normal and high, with a dif-
ference of 25 ◦C between the two. We collected responses
to the same set of 64-bit challenges at each temperature.
We measured an intra-die variation in responses of less
than 6%. The absence of overlap between the inter-die
and intra-die distributions indicates that our system
can correctly distinguish between different chips even
when exposed to changes in operating conditions, such

 0

 1

 2

 3

 4

 5

 6

 7

 1000 2000 3000 4000 5000 6000 7000 8000

C
a

c
h

e
 W

a
y

Cache Set

Correctable Error

Figure 2: Distribution of correctable error locations at
the minimum safe Vdd in a 4MB cache.

 0

 1

 2

 3

 4

 5

Set400/Way0 Set800/Way0 Set1200/Way0

E
rr

o
r

C
o

u
n

t

Cache Line Address

Error Count Across Caches

Figure 3: Addresses of correctable errors at minimum
safe Vdd in 8 L2 caches of 768KB each. For each address
we show the total number of errors across all 8 caches.

as temperature.
Finally, while conducting these experiments, we ob-

serve that the correctable errors raised by the system
are persistent. In other words, the vast majority of low-
voltage errors are reproducible and will re-occur with
high probability when self-tests are conducted at the
same voltage level. Error persistence is crucial to our
design since it allows our cache-based PUF to reliably
generate correct responses to authentication challenges.

4. THE AUTHENTICACHE SYSTEM
Authenticache leverages the distribution of cache er-

rors at low voltages as a foundation for its PUF, requiring
no dedicated hardware support. The challenge-response
function is formulated by mapping the error distribution
into a 3D representation (x, y, z) of the cache layout at
different voltages, as illustrated in Figure 4. The (x, y)
dimensions represent a geographic mapping of the cache
addresses, including sets and ways on a bi-dimensional
plane. The z dimension represents different Vdd levels.
Each point in the 3D depiction is associated with a bi-
nary value. Cache lines that are error free are given a
value of “0,” whereas cache lines that exhibit errors are
set to “1.”

4.1 Challenge and Response
One of our design objectives is to provide a large num-

ber of CRPs to ensure sufficient authentication trans-
actions are available for the lifetime of the chip. A
näıve approach to constructing the PUF function would
be to formulate challenges that directly check for the
presence of cache errors at specific geographic locations
and supply voltages. However, this approach has the
downside of disclosing the error information which lim-

way 0
way 1
way 2

way n
...

set 0
way 0
way 1
way 2

way n
...

set 1
way 0
way 1
way 2

way n
...

set k

...

way 0
way 1
way 2

way n
...

set j
...

way 0
way 1
way 2

way n
...

set j+1
way 0
way 1
way 2

way n
...

set m

...

... ...
1

1

1

1
1 1 1

1
1

1

1

Cache layout

Error maps

y

x

Vi

Vi+1

Vi+2

z

Figure 4: The mapping of cache line errors to Authenti-
cache’s error map.

its the number of challenges to the number of errors
observed by the cache. The responses would also be
heavily biased towards “0,” leading to poor uniformity
since the error-free cache lines greatly outnumber the
ones with errors. To circumvent these limitations, we
design a challenge-response mechanism that indirectly
leverages the location of cache errors.

Our solution selects arbitrary cache line pairs and
measures the Manhattan distance from each of these
cache lines to the closest cache line that contains an
error. The challenge can be summarized with the ques-
tion, “Which of the two points, A or B, is closest to an
error?” More formally, let A and B be two cache lines
that represent cache map coordinates P1(x1, y1, V) and
P2(x2, y2, V

′) respectively. The challenge is defined by
equations (7) and (8):

Challenge(A,B) = (P1(x1, y1, V), P2(x2, y2, V
′)) (7)

Response =

{
0, if dist(A, e1) ≤ dist(B, e2)
1, if dist(A, e1) > dist(B, e2)

(8)

where e1 represents the closest error to point P1, and e2
the closest error to point P2. The Manhattan distance
between the points is computed as shown in equation
(9).

dist(P1, P2) = |x1 − x2|+ |y1 − y2| (9)

Figure 5 illustrates an example of an Authenticache
challenge using cache lines A and B. In this example, we
assume the challenge is conducted at the same supply
voltage, thus V = V ′. Since the Manhattan distance
from point B to the closest error (dist(B, e) = 4) is
smaller than the distance from point A to its closest
error (dist(A, e) = 5), the response to this challenge is
“1.” Note that this represents only one bit of the entire
challenge. The typical challenges we use range between
64 and 512 bits, requiring as many pairs of randomly
chosen cache lines.

4.2 Challenge Diversity and Storage
The use of two arbitrary coordinates in the cache map

to generate a challenge greatly increases the number

Error map

B

e
e e

A

e

(x1,y1)

(x2,y2)

e

dist(A,e)=5
dist(B,e)=4

e

e cache line with error

error-free cache line

A B challenge coordinates

Figure 5: Authenticache error map example for
Challenge(A,B).

of unique CRPs available to the system. With this
approach, the number of possible challenges for a cache
with n lines can be viewed as a complete graph G where
each cache line is a vertex. Therefore, the amount of
possible CRPs is equivalent to the number of edges in
the fully connected graph G, as shown in equation (10).

Possible CRPs =

n−1∑
k=1

k =
1

2
n(n− 1) (10)

Traditional PUF implementations require CRPs to
be stored on a server. Since the number of unique
CRPs required for authentication over the lifetime of a
given chip is very large (millions-billions), the storage
space requirements can be substantial. Considering that
each authentication server manages a large number of
clients, the storage demands can become prohibitive.
The Authenticache PUF design allows for a compact
representation of each client’s information. Instead of
storing individual CRPs in a database, the Authenti-
cache server only keeps the client’s error data. Therefore,
CRPs are generated in an on-demand fashion based on
these error maps.

4.3 Authentication
Authenticache is designed to ensure safe and efficient

interaction between a client and server in the field. The
authentication process associated with our design is sum-
marized in Figure 6. After receiving an authentication
request, the server begins by selecting a supply voltage
Vi that identifies the cache address information (cache
sets and ways) to be used in constructing the error map.
To mitigate the susceptibility of our design to model
building attacks, the physical error layout is applied
to a hash function that produces a logical error map
based on a derived key, KA. The server formulates a
challenge using the produced logical map and issues it
to the client. Upon receipt of the challenge, the client
extracts the address information using the same key KA,
tests the cache at supply voltage Vi, and responds to the
server. When the client’s response is received, the server
compares it with its computed response and makes an
authentication decision.

Changing the supply voltage of the chip can be a

Server

Auth. Transactions

Challenge

Response

(xi,yi,Vi)...

110...01

Client

Authentication

Voltage Vi Map
Data

(Set 1,
Way 3)

Map(KA)

Error Map Vi

...

ECC Event

Cache-line

Test Vi

ECC

Unmap(KA)

Error Map Vi

LLC

Figure 6: Authentication process between a client and
server using error maps.

relatively slow process. Therefore, in order to accommo-
date performance sensitive applications, the full set of
challenge bits can be restricted to a single supply volt-
age level. This way, a client device would only need to
set the voltage once per challenge-response transaction.
In cases where multiple voltage settings per challenge-
response transaction are desired, the challenge bits can
be re-arranged by the client in decreasing order of the
supply voltage to minimize the delay associated with
Vdd transitions.

4.4 Threat Model
We assume attackers could potentially intercept CRP

transactions. In order to thwart replay and model build-
ing attacks, we do not allow challenges to be reused,
regardless of the cache line ordering in the challenge.
For instance, once challenge C(A,B) is consumed, both
C(A,B) and C(B,A) can no longer be used. As a result,
the authentication server keeps track of previously issued
challenges. While this requires additional storage over
time, the amount needed is proportional to the number
of authentications performed rather than the number
of possible authentications. We expect this to result
in lower storage overhead compared to traditional PUF
authenticating servers.

Gaining physical access to the device presents another
vector of attack. This approach assumes that an at-
tacker has the appropriate knowledge about the chip
and the ability to bypass the firmware. Under such cir-
cumstances, an attacker could collect the physical error
map associated with the device for multiple voltages.
Authenticache protects against physical access attacks in
two ways. First, PUF access requires firmware level priv-
ileges. Second, Authenticache uses a hashing function
that remaps the physical error locations. A success-
ful attack would require the mapping of the physical
error locations as well as successful extraction of the
remapping key.

4.5 Adaptive Error Remapping
To mitigate the risk of model building attacks, we

devised a secure mechanism that enables on-demand
reconstruction of the logical error maps. This is accom-
plished by dedicating a fraction of the available Vdd
settings to serve the purpose of supplying Authenti-
cache’s hash function with new keys. This process is

Server Client
Authentication

Reserved Vj Map
Data

(Set 5,
Way 7)

Error Map Vj

...

Error Map Vi
Remap Transactions

(xj,yj,Vj)...

Challenge

ECC

SUCCESS

Status

Helper Data

Key Generation

Error Map Vi

LLC

Test Vj

Error Map Vj

KA KB

Update

Unmap(def.)

KB

Map(def.)

Map(KA)

Map(KB)

Figure 7: Illustration of the error map update process
between a client and server through new keys.

described in Figure 7. To initiate a map update, the
authenticating server identifies one of the reserved volt-
ages, shown as Vj in Figure 7. The server uses the
aforementioned voltage in conjunction with a default
cache line mapping to generate a challenge out to the
client. To ensure precise key derivation on the client side,
the server provides error-correcting helper data along
with the issued challenge. Once the client receives a
map update request, it computes the response and com-
bines it with the helper data to form the new key, KB ,
that can be employed in future error maps. The client
concludes this process by acknowledging the server with
a completion status. It performs this without disclosing
the response associated with the original challenge, so it
is kept secret. For added security, multiple challenges
involving different reserved Vdd settings can be chained
for producing the final key.

5. AUTHENTICACHE PROTOTYPE
The client side of the proposed authentication system

was prototyped on an HP Integrity Server that uses
Intel Itanium 9560 processors. We implemented all the
core functionality of the Authenticache client including
initiation of the authentication process through the OS,
firmware functionality for taking control of the processor
during authentication, support for lowering the chip
voltage, routines for self-testing and error handling, and
the Authenticache PUF algorithm.

Figure 8 depicts the overall architecture of the pro-
totype. It outlines the main components of the System
Firmware and how our solution integrates into the ex-
isting framework. We describe this section using x86
terminology based on the readers’ familiarity with this ar-
chitecture. The equivalent Itanium interfaces employed
in the actual prototype can be found in [26, 27].

5.1 Shadowed Execution
Client authentication is initiated through the trans-

fer of control from the OS layer into a secure region in
System Firmware. This is achieved through a special
interrupt called System Management Interrupt (SMI).
This mechanism enables System Firmware to conduct
platform management tasks transparently from the OS.
Therefore, once a client application running in user space

is ready to initiate an authentication transaction, it in-
directly generates an SMI through a loadable kernel
module, prompting the interrupted core to enter Sys-
tem Management Mode (SMM). Once in SMM mode,
various resources become shadowed from the OS and
other less privileged entities. At this point, the processor
that is currently residing in SMM will act as a master
throughout the authentication process and in turn, syn-
chronize the remaining cores to be in the same mode.
This synchronization is achieved by broadcasting a set
of interrupts to the remaining cores.

Upon entrance into the SMI handler that is part of
System Firmware, all the processors are halted with the
exception of the master which coordinates the remainder
of the authentication process. This prevents any user
code from running on the system during authentication.
Employing SMM mode for authentication has distinct
advantages. It has the advantage of serving as a pro-
tection layer through its trusted execution environment.
For instance, execution in this mode is mapped to a spe-
cial memory range that is known as System Management
RAM (SMRAM). This range is only available while in
SMM mode. It can be configured with a variety of mem-
ory attributes, including the ability to designate critical
regions as uncacheable. This makes the design more
robust against contention based exploits such as prime
and probe [28, 29, 30]. Moreover, this approach has the
benefit of ensuring a quiesced system state to reduce the
impact of noise effects prior to the manipulation of the
cache voltage settings.

5.2 Self-Test and Error Handling
The error handler is responsible for capturing the cor-

rectable error distribution from the processor cache. It
serves two primary purposes throughout the different
phases of platform operation: self-testing and error mon-
itoring. During system calibration, the error handler
is tasked with performing a series of self-tests through
cache sweeps. The handler responds to ECC events
that occur during this process, compiles the error rate
information, and shares it with the voltage control sys-
tem. This enables the voltage control system to make
adaptive decisions about the lowest Vdd available during
the authentication process at runtime. In addition to
performing cache sweeps, the error handler is responsible
for conducting targeted cache line testing. It receives a
list of cache lines to self-test for a given challenge request.
It accomplishes this by generating test bit patterns that
are written into the designated cache lines followed by
read transactions to the same set of lines. Finally, the
module is provisioned with emergency detection capa-
bility. It monitors emergency events by tracking abrupt
changes in the error rate and reacts by instructing the
voltage control system to immediately raise the supply
voltage if a pre-defined threshold is exceeded.

5.3 Voltage Control
The voltage control system is responsible for making

dynamic voltage adaptation decisions based on feedback
from the authentication and error handling modules.

User Space

Kernel Space

System Firmware
 (SMM)

Core 2
HALT HALT

Authentication
Algorithm

Vdd Request

ABORT
Self-test Trans. n

LLC

Adapt Vdd
VR

ECC
Event Cache-line

Test

Core 1
Core

Synchronization

Error Rate

Emergency
Error Handler

. . .

Authenticate

SMI

Authenticache
Client

Management
Driver

Trans. 0

ECC

Voltage Control

Core 0
(Master)

Figure 8: Main components and interfaces of the Au-
thenticache prototype.

Voltage control can be activated during two distinct
phases of operation: boot time and runtime.

During boot time, the voltage control system estab-
lishes a voltage floor that represents the lowest safe Vdd
at which all triggered errors are correctable. Challenges
are not permitted to use Vdd levels below this floor set-
ting. This safeguards against malicious exploits that
issue challenges containing unsafe voltages intended to
crash the system. The floor setting is different from
chip to chip due to process variation. It is determined in
tandem with the error handling module by progressively
lowering the Vdd while performing built-in self-tests on
the cache. The system periodically recalibrates its Vdd
floor to account for environmental changes, such as
aging and temperature variation.

The second phase of operation for the voltage control
system is during runtime. The primary role of this
module throughout this phase is to service new Vdd
requests issued by the main authentication algorithm.
Once ownership of the processors is transferred to the
OS, SMM mode marks the only path for invoking the
voltage control system. This restriction protects against
unauthorized access to the chip’s low-Vdd error profile.
In the event that an invalid Vdd setting is received, an
ABORT signal is issued back to the requester and the
transaction is ignored. Otherwise, if the requested Vdd
is valid, the voltage control system proceeds with setting
the supply voltage to the appropriate level.

5.4 Authentication
The authentication algorithm is the centerpiece that

coordinates the operation of the various entities within
Authenticache. It begins by taking a challenge received
from user space and sorting the individual bits in de-
scending order according to their Vdd. This minimizes
the number of Vdd transitions and their respective delays
by grouping challenge bits that have the same voltage
level. Since our prototype focuses on challenges with
single Vdd settings as a proof-of-concept, we leave the
optimization of multiple Vdd usage for future work.

As a next step, the module consumes the updated
challenge and segments it into multiple atomic transac-
tions that are bound by a maximum payload size. The
different challenge bits embedded within these trans-
actions are converted into their respective cache line
addresses in preparation for self-testing. Once the cache
line set and way information is determined, the voltage
control system is instructed to lower the Vdd to match
the setting dictated by the current challenge. The Vdd
setting is followed by a transaction to the error handler
that self-tests the neighboring cache lines in search of
the closest error. The region of cache lines that are
explored for each bit of the challenge is processed in an
outward and clockwise fashion. As such, self-testing for
each challenge bit is performed over its Von Neumann
neighborhood starting with a range r = 1, r = 2, etc.
until an error is triggered. Once a correctable error is
discovered, the Manhattan distance is recorded for com-
parison. In the event that an ABORT is signaled at any
point in the process, the algorithm simply terminates
and resumes execution back to the OS with an error
code indicating a failure.

6. EVALUATION

6.1 Methodology
The evaluation is based on the Authenticache proto-

type as well as extensive Monte Carlo simulations. In
the case of Monte Carlo, each cache configuration was
simulated with 100 distinct error maps where every map
was evaluated against 50K noise profiles. For hardware
based experiments, we used eight L2 caches from an
Intel Itanium II 9560 processor [24]. The caches are
based on 32nm CMOS technology and are protected
with SECDED ECC. To evaluate the effect of tempera-
ture variation on our solution, we conducted experiments
at normal and high temperatures, with a difference of
25 ◦C. The high temperature was achieved on hardware
by slowing down the enclosure fan speeds of the server
while running a power virus on all the processor cores.
We examined the robustness of the system in adapting
to environmental conditions as well as the impact of our
technique on performance. We begin this discussion by
characterizing the effects of noise on failure rates and
the sensitivity of cache lines to self-tests at low Vdd.

6.2 Identifiability in Noisy Environments
A large body of research has demonstrated the impact

of noise on the reliability of modern microprocessors
[31, 32, 33, 34, 35, 36, 37]. Sources of noise include:
static voltage drops across the power distribution net-
work, dynamic voltage noise, temperature, and circuit
aging induced by Negative Bias Temperature Instability
(NBTI) and Hot-Carrier Injection (HCI) phenomena. In
the case of Authenticache, we are concerned with this
noise changing the error profile of the cache with respect
to what was measured post-manufacturing. We classify
these effects in two categories: the introduction of new
errors and the masking or removal of errors identified in
the recorded error map.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 64 128 192 256 320 384 448 512

Code Distance (bits)

Intra-chip (10% Noise)
Intra-chip (150% Noise)

Inter-chip

Figure 9: Hamming distance distribution for PUF re-
sponses from a 4MB cache with 512-bit challenges.

Unexpected new errors can occur as the system is
exposed to noise sources such as voltage fluctuations and
circuit aging. Having new cache lines added to the error
distribution can lead to incorrect authentication. We
measure PUF errors introduced by noise as the Hamming
distance from the noisy response to the expected correct
response. Figure 9 shows the distribution of Hamming
distances for 512-bit challenges with 10% and 150%
injected noise. These are Monte Carlo simulations of
randomly generated error maps with 10% and 150%
unexpected errors injected into the system relative to
the number of existing errors (e.g. if the baseline cache
has 100 errors, we add 150 new errors in the 150%
case) . We also show the inter-chip Hamming distance
distribution for randomly generated error maps relative
to the current cache’s distribution.

The 10% noise distribution represents what we would
expect to encounter during normal operation. This
distribution shows virtually no overlap with the inter-
chip variation distribution, meaning the probability of
misidentification at 10% noise is extremely low. Even
with 150% of injected noise, the amount of overlap be-
tween the intra-die and inter-die components is small
(around 2× 10−6 or 2 ppm failure rate).

Overall, we find Authenticache to be remarkably re-
silient to injected noise. This is primarily due to the
fact that Authenticache uses the error map indirectly
by computing distances to errors, rather than using the
location of the errors as part of the challenge. Injected
errors induced through noise would have to occur in
specific regions of the cache in order to flip the result
of the challenge. Moreover, several bits within a given
response would need to be affected in order to lead to
incorrect authentication.

The second effect of noise Authenticache could face is
error masking or removal. In this case, cache lines that
are part of the error map fail to manifest when tested
in response to a challenge. We expect this type of error
to be induced predominantly through inaccuracies in
measurement as cache lines undergo self-testing during
the enrollment phase. For instance, noisy conditions
during enrollment could cause an otherwise robust cache
line to trigger an error. This error will be recorded in the
error map, but may never trigger during authentication
transactions.

We evaluate the robustness of Authenticache in the
presence of new errors being introduced as well as ex-

 0

 20

 40

 60

 80

 100

 120

 140

64-bit 128-bit 256-bit 512-bit

M
a

x
 T

o
le

ra
b

le
 N

o
is

e
 (

%
)

CRP Size

Expected Errors Removed Unexpected Errors Injected

Figure 10: Maximum tolerable noise for maintaining a
failure rate less than 1 ppm across multiple CRP sizes.

pected errors being removed from the error map. We
collect data through Monte Carlo simulations where we
consider 50K noise profiles across different chip configu-
rations. We assume a 4MB cache size with 100 errors
each in randomly generated distributions. The simu-
lated cache closely resembles the characteristics of our
prototype.

Figure 10 shows the maximum tolerable noise in per-
centage of errors either added or removed from the error
map. The maximum acceptable noise is defined as any
noise that results in authentication failure with a proba-
bility lower than 10−6 or 1 ppm – a threshold considered
acceptable in prior work such as [8]. We show the maxi-
mum threshold for a range of CRP sizes from 64 to 512
bits.

Overall, Authenticache is quite robust against envi-
ronmental noise. It can maintain a failure rate that is
under 1 ppm while tolerating up to 142% and 79% of un-
expected errors injected using 512-bit and 256-bit CRP
lengths respectively. Similarly, we can tolerate up to 62%
and 45% of error cache lines removed for the same CRP
sizes respectively. We observe that sensitivity to noise
increases inversely proportional to the CRP size. This
data suggests that Authenticache is more susceptible to
system errors being removed than injected. However, for
CRP sizes above 128-bit, the maximum tolerable noise
is much larger than one would expect to experience in
the field.

6.3 Cache Error Persistence
Having cache lines that consistently and repeatedly

trigger errors during self-test is fundamental to the de-
sign of Authenticache. We call this characteristic error
persistence. Given that most cache errors encountered
during low-Vdd self-test are caused by process varia-
tion, we expect them to exhibit high persistence. We
conduct tests on our hardware prototype to verify this
assumption.

We set the supply voltage to the minimum safe Vdd
(floor) at which the system functions correctly and run
targeted self-tests across 50 cache lines with known errors
from different cores. We record the number of self-
tests required to trigger each error. Figure 11 shows a
cumulative distribution of all the cache lines we test as
a function of the number of self-tests before an error
manifests in each line.

The results confirm that indeed cache errors exhibit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

C
D

F

Number of Cache Line Self-tests

CDF vs. Number of Cache Line Self-tests

Figure 11: Cumulative distribution function of cache
lines from the error map triggering correctable errors as
a function of number of self-test attempts.

high persistence. We observe that 74% of the cache lines
in the error map trigger an error during the first self-test
attempt while 94% of the lines trigger on their fourth
attempt. All cache lines in our error map trigger an
error by their eighth attempt.

In order to ensure that all errors are triggered, the
Authenticache PUF could test every cache line in the
challenge at least eight times. This conservative ap-
proach, however, would increase the PUF’s performance
overhead. A more efficient alternative is to exploit Au-
thenticache’s noise tolerance and perform a smaller num-
ber of self-tests. In fact, all CRP sizes with the exception
of the 64-bit CRP can deliver a failure rate that is less
than 1 ppm with a single self-test attempt per cache line.
This is because all CRP sizes larger than 64 bits can
tolerate more than the 26% masked errors occurring in
the single-attempt self-test scenario (Figure 10). Other
configurations in this optimization space are possible
(e.g. 2 self-tests per line for a 6% error masking rate,
etc.).

6.4 Aliasing and Uniformity
To evaluate the randomness and predictability of our

design, we consider several Monte Carlo experiments
that examine bit-aliasing and uniformity characteristics.
We use a distribution of 100K CRPs across multiple chip
configurations consisting of different error counts. In
general, we observe that the bit-aliasing and uniformity
results represented by Figures 12a and 12b respectively
are within approximately 1% of their ideal values (49%
on average).

While the differences are relatively small, we note a
downward trend as the number of errors in the error
map increases. This is due primarily to our PUF’s slight
bias towards “0.” In other words, when the distances
to the closest errors are equal, the PUF’s outcome is “0”
rather then “1” as indicated by equation (8). At higher
error densities the distances between challenge points
and errors are smaller. This increases the probability
that given two coordinates in a challenge, the distances
to their closest errors are equal.

Finally, we do not observe any notable changes in
aliasing or uniformity as we vary cache sizes from 4MB
to 64KB, provided we maintain the same error density.
Similarly, we do not see significant differences as a result
of changes in the CRP size.

 0.6

 0.7

 0.8

 0.9

 1

64-bit 128-bit 256-bit 512-bit

R
e

la
ti
v
e

 B
it
-a

lis
in

g

CRP Size

Ideal
20 errors

40 errors
60 errors

80 errors

(a) Bit-aliasing

 0.6

 0.7

 0.8

 0.9

 1

64-bit 128-bit 256-bit 512-bit

R
e

la
ti
v
e

 U
n

if
o

rm
it
y

CRP Size

Ideal
20 errors

40 errors
60 errors

80 errors

(b) Uniformity

Figure 12: Bit-aliasing and uniformity of Authenticache
relative to their ideal values for a 4MB cache using
different numbers of errors and CRP sizes.

6.5 Performance Overhead
The performance overhead of Authenticache is pri-

marily a function of challenge size, number of self-test
attempts, cache size, and number of errors in the PUF’s
error map. Figure 13 shows Authenticache’s runtime
for a single authentication as a function of CRP size
based on measurements from our prototype system. As
expected, the performance overhead increases mostly
linearly with the CRP size. Larger CRPs have the ad-
vantage of being more robust against noise. Smaller
CRPs, on the other hand, are faster to process. Simi-
larly, the overhead increases linearly with the number
of self-test attempts. Thus, it is expected that for each
design the number of self-test attempts would be chosen
based on the amount of environmental noise a system
may be exposed to. Overall, a robust 512-bit CRP with a
conservative 4 self-test attempts per cache line completes
in less than 125ms. This is negligible overhead relative
to the communication cost involved in connecting to the
authentication server.

Figure 14 illustrates the performance overhead as a
function of CRP size and number of errors in the error
map for a 4MB cache. The performance is relative to
a baseline with 100 errors and 64-bit CRP. We note
that performance overhead increases as the number of
errors in the error map goes down. This is due to the
increased average distance between challenge coordinates
and the closest errors, as the error map becomes more
sparse. Identifying errors that are more distant requires
additional cache lines to be tested. Thus, increasing the
overall performance overhead.

Figure 15 shows the average distance to the nearest
error as a function of the number of errors in the map.
For all cache sizes, the average distance increases with

 0

 50

 100

 150

 200

 250

64-bit 128-bit 256-bit 512-bit

T
im

e
 (

m
s
)

CRP Size

1 Attempt 2 Attempts 4 Attempts 8 Attempts

Figure 13: Runtime as a function of CRP size while
using different per cache line self-test attempts in a 4MB
cache.

 0

 10

 20

 30

 40

 50

64-bit 128-bit 256-bit 512-bit

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

CRP Size

100 errors

80 errors

60 errors

40 errors

20 errors

Figure 14: Performance as a function of the number of
errors relative to a cache with 100 errors, for a 4MB
cache.

fewer errors. On average, Authenticache performance
improves by 1.6% for every new error in the map. This
corresponds to a 0.5% decrease in the average distance
for each new error.

6.6 Authenticache Lifetime
We expect Authenticache will scale well to different

types of devices and applications, including mobile and
server-class CPUs. Our study is based primarily on a
4MB LLC that can be found in today’s mobile processors
such as Apple’s A8 [25] and a 32MB LLC such as the one
on the Itanium processor we use in our prototype. Table
1 summarizes the available CRP count for different cache
sizes and challenge lengths. These numbers represent
the daily authentications that are available over a span
of 10 years. Even when using the largest challenge size
of 512 bits, a 4MB cache provides more than 1K daily
authentication transactions. A 32MB cache, on the other
hand, supports more than 73K daily authentications

 0

 10

 20

 30

 40

 50

10 20 30 40 50 60 70 80 90 100

A
v
g

.
D

is
ta

n
c
e

 (
C

a
c
h

e
 L

in
e

s
)

Errors

256 KB 512 KB 1 MB 2 MB 4 MB

Figure 15: Average Manhattan distance to the nearest
error as a function of total number of errors for different
cache sizes.

over the same 10-year lifespan. Previous studies [38, 39]
suggest that desktop users perform 8-12 authentications
per day. While we anticipate this number to be higher
for mobile clients, we envision it to be well within the
daily numbers shown in Table 1. Furthermore, it is
important to highlight that Table 1 only represents the
available transactions at a single Vdd. Additional CRPs
can be made available by using multiple Vdds to generate
more error maps.

Challenge Length Auth. Per Day Auth. Per Day
(4MB LLC) (32MB LLC)

64-bit 9192 588350
128-bit 4596 291175
256-bit 2298 147088
512-bit 1149 73544

Table 1: Daily authentications available for different
cache sizes and CRP lengths assuming a 10-year chip
lifetime.

6.7 Model Building Attack Case Study
Modeling attacks against a client system generally in-

volve the interception of CRP transactions. These CRPs
could then be used to eventually clone the client’s PUF
[40, 41]. To evaluate the vulnerability of Authenticache
to such attacks, we developed a model that progressively
establishes dependencies between points in the error map
based on observed CRPs. This allowed us to examine
the expected amount of model training needed to accu-
rately predict responses. We generated a large number
of random and unique CRPs that were presented to the
untrained model. For each observed CRP, we tested the
accuracy of the prediction, then used it to further refine
the model.

Figure 16 shows the percentage of correctly predicted
response bits within a 64-bit challenge as a function of
CRPs included in the training set. In this experiment,
the challenges were confined to a single error map (single
Vdd setting) to explore the worst case condition. We can
see that initially, the model is able to predict approxi-
mately 50% of the response bits. This is expected given
Authenticache’s almost ideal uniformity. The accuracy
of the model begins to improve after its training set
reaches 40K CRPs. The ability to achieve 70% and 90%
prediction rates requires access to 87K and 374K CRPs
respectively.

These numbers show that staging a successful model
building attack against Authenticache would be difficult.
However, to further mitigate exposure to modeling at-
tacks, we propose periodic regeneration of the mapping
between physical and logical error locations using the
mechanism described in Section 4.5. Regenerating the
logical error map after a predefined number of CRPs
have been consumed forces an attacker to retrain their
model. The frequency at which the error map would be
regenerated depends on the amount of noise a system
must tolerate. For example, if the system expects 10%
noise, then the logical map should be updated before
the number of CRPs required to achieve 90% accuracy
has been consumed.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50000 100000 150000 200000 250000 300000 350000 400000

P
re

d
ic

ti
o

n
 R

a
te

 (
b

it
s
/r

e
s
p

o
n

s
e

)

CRP Count

Prediction Rate vs. Observed CRP

Figure 16: Model prediction accuracy as a function of
observed CRPs.

7. RELATED WORK

7.1 PUF Designs
The majority of circuit-based PUF designs fall into two

categories: delay-based and memory-based. Delay-based
PUFs exploit the slow-down of certain paths relative
to others as a result of process variation. Such PUFs
mostly rely on signal propagation that is controlled
through either arbitration or oscillation. In the case of
arbitration, a set of external bits are applied to induce
a race condition between data and clock signals as they
propagate through predefined logic blocks [1, 3, 6, 42].
Oscillation-based techniques, on the other hand, rely
on comparing the difference in accumulated oscillations
between circuits over a predefined time duration [3, 7].

Memory-based PUFs exploit differences in how mem-
ory devices react to process variation. In general, the
power-on state of balanced memory devices such as 6T
SRAM cells, depends on the amount of stochastic noise
present in the system. However, because of process vari-
ation, memory cells favor certain power-on states over
others (e.g. “1” vs. “0”). Memory-based PUFs leverage
this observation by constructing large blocks of SRAM
that can be addressed randomly [8, 9]. In addition
to comparing power-on states, some designs compare
memory sensitivities to write failures [10, 11]. Other
techniques leverage different storage elements such as
latches instead of traditional SRAM cells [43].

Virtually all prior work we are aware of on silicon
PUFs requires dedicated circuitry to be added to the
processor or system, incurring design and deployment
costs. Authenticache leverages existing on-chip error
correction logic in processor caches and the error signa-
ture of each chip to implement system authentication
with virtually no additional hardware support.

7.2 Side-Channel Attacks
Several studies have discussed the vulnerability of

processor caches to side-channel attacks [28, 29, 44, 45,
46, 47, 48, 49, 50]. Based on our design, we anticipate
techniques such as electromagnetic emanation and power
fluctuation analysis to present likely vectors of attack
against Authenticache. For instance, an attacker could
utilize the aforementioned approaches to correlate signa-
tures with ECC related activity in an attempt to reverse
engineer the error map. To mitigate this risk, firmware
can be configured to interleave authentication related

accesses to the cache with random transactions.
Prime and probe is another technique commonly ap-

plied against caches [28, 29, 30]. Although Demme et al.
[44] suggest that large caches have a low vulnerability
factor, firmware could serve as a protection layer against
such attacks, irrespective of the cache size. For example,
the authentication handler could be marked to utilize
uncacheable regions as a way of preventing malicious
user-processes from scanning the firmware’s working set
after cores are resumed back to the OS.

7.3 Other PUF Applications
Cryptographic key generation represents another ap-

plication for PUFs. This type of application is generally
reserved for PUFs that possess a limited number of
CRPs. Unlike traditional key generators, PUFs have the
advantage of obviating the need for secure non-volatile
memory and expensive tamper sensing packages as a
result of their inherently random behavior. However,
PUFs suffer from the susceptibility to environmental
noise conditions which make it difficult to accurately re-
produce previously generated keys. To address this issue,
error correction techniques can be employed to enable
precise reconstruction of noiseless keys [1, 2, 3, 7, 51, 52,
53]. Similarly, the output of such PUFs can be used as
seeds into pre-existing key-generation algorithms.

8. CONCLUSION
The rapid growth in mobile and wearable technology

is driving the need for cost effective designs that can
autonomously safeguard digital content. In this study,
we propose Authenticache, a novel PUF-based authen-
tication mechanism that leverages correctable errors in
caches as fingerprints. This approach demonstrates that
a silicon-based PUF without dedicated hardware is not
only feasible, but very robust and highly resilient to
environmental and measurement noise. We realize a
proof-of-concept to show that the system is practical
and inexpensive to deploy in production.

We evaluate the proposed solution using both hard-
ware and extensive simulations. Our results demonstrate
Authenticache’s ability to withstand up to 142% of noise
while maintaining a misidentification rate that is be-
low 1 ppm. We characterize the design across a variety
of configurations including different cache capacities,
correctable error profiles, and CRP sizes. Finally, we
present a secure mechanism that mitigates Authenti-
cache’s exposure to model building attacks, enabling the
design to sustain thousands of daily authentications.

Acknowledgements
The authors would like to thank the anonymous review-
ers for their feedback and revision suggestions. We also
extend special thanks to Edward Suh, Yinqian Zhang,
and members of The Ohio State Computer Architecture
Research Lab for their valuable discussions and insights
on this work. Finally, we thank HP for providing infras-
tructure assistance to make this research possible, and
the National Science Foundation for financial support
under grant CCF-1253933.

9. REFERENCES
[1] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas,

“Physical unclonable functions and applications: A tutorial,”
Proceedings of the IEEE, vol. 102, pp. 1126–1141, August
2014.

[2] G. E. Suh and S. Devadas, “Physical unclonable functions
for device authentication and secret key generation,” in
Design Automation Conference (DAC), pp. 9–14, 2007.

[3] R. Maes and I. Verbauwhede, “Physically unclonable
functions: A study on the state of the art and future
research directions,” in Towards Hardware-Intrinsic Security,
Information Security and Cryptography, pp. 3–37, Springer
Berlin Heidelberg, 2010.

[4] “Verayo Simply Secure.” http://www.verayo.com.

[5] “Intrinsic ID.” http://www.intrinsic-id.com.

[6] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas, “A technique to build a secret key in integrated
circuits for identification and authentication applications,” in
IEEE Symposium on VLSI Circuits, pp. 176–179, 2004.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas,
“Silicon physical random functions,” in ACM Conference on
Computer and Communications Security (CCS),
pp. 148–160, 2002.

[8] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls,
“FPGA intrinsic PUFs and their use for IP protection,”
Cryptographic Hardware and Embedded Systems Workshop,
2007.

[9] D. E. Holcomb, W. P. Burleson, and K. Fu, “Initial SRAM
state as a fingerprint and source of true random numbers for
RFID tags,” Proceedings of the Conference on RFID
Security, 2007.

[10] A. R. Krishna, S. Narasimhan, X. Wang, and S. Bhunia,
“Mecca: A robust low-overhead PUF using embedded
memory array,” Proceedings of the International Conference
on Cryptographic Hardware and Embedded Systems,
pp. 407–420, 2011.

[11] Y. Zheng, M. S. Hashemian, and S. Bhunia, “RESP: A
robust physical unclonable function retrofitted into
embedded SRAM array,” in Design Automation Conference
(DAC), pp. 1–9, 2013.

[12] A. Bacha and R. Teodorescu, “Using ECC feedback to guide
voltage speculation in low-voltage processors,” in
International Symposium on Microarchitecture (MICRO),
pp. 297–307, December 2014.

[13] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage
margins by leveraging on-chip ECC in Itanium II processors,”
in International Symposium on Computer Architecture
(ISCA), pp. 297–307, June 2013.

[14] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic
method to evaluate and compare the performance of
physical unclonable functions,” in Embedded Systems Design
with FPGAs, pp. 245–267, Springer, 2013.

[15] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A
large scale characterization of RO-PUF,” in IEEE
International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 94–99, 2010.

[16] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh,
“Quantitative and statistical performance evaluation of
arbiter physical unclonable functions on FPGAs,” in
International Conference on Reconfigurable Computing and
FPGAs (RECONFIG), pp. 298–303, IEEE Computer
Society, 2010.

[17] Y. Su, J. Holleman, and B. P. Otis, “A digital 1.6 pj/bit chip
identification circuit using process variations,” IEEE Journal
of Solid-State Circuits, vol. 43, pp. 69–77, January 2008.

[18] R. Maes, Physically Unclonable Functions: Constructions,
Properties and Applications. PhD thesis, Katholieke
Universiteit Leuven, 2012.

[19] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy,
“Process variation in embedded memories: failure analysis
and variation aware architecture,” IEEE Journal of
Solid-State Circuits, vol. 40, pp. 1804–1814, September 2005.

[20] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm
sub-threshold SRAM design for ultra-low-voltage operation,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 3,
pp. 680–688, 2007.

[21] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical
design and optimization of SRAM cell for yield
enhancement,” in International Conference on
Computer-aided Design (ICCAD), pp. 10–13, 2004.

[22] Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung,
“Selective wordline voltage boosting for caches to manage
yield under process variations,” in Design Automation
Conference (DAC), pp. 57–62, 2009.

[23] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A
Sub-200mV 6T SRAM in 0.13µm CMOS,” in International
Solid-State Circuits Conference (ISSCC), pp. 332–606,
February 2007.

[24] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer,
P. Gronowski, and T. Grutkowski, “A 32nm 3.1 billion
transistor 12-wide-issue Itanium processor for
mission-critical servers,” in International Solid-State Circuits
Conference (ISSCC), pp. 84–86, February 2011.

[25] J. Ho, B. Chester, C. Heinonen, and R. Smith, “The iPhone
6 review: A8’s CPU: What comes after Cyclone?.”
AnandTech, September 2014. http://www.anandtech.com.

[26] “Intel Itanium architecture software developer’s manual,
2010, revision 2.3.”

[27] “Intel Itanium processor family system abstraction layer
specification, 2008, revision 3.3.”

[28] F. Liu and R. B. Lee, “Random fill cache architecture,” in
International Symposium on Microarchitecture (MICRO),
pp. 203–215, December 2014.

[29] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of AES,” in The Cryptographers’
Track at the RSA Conference on Topics in Cryptology
(CT-RSA), pp. 1–20, 2006.

[30] C. Percival, “Cache missing for fun and profit,” in The
Technical BSD Conference (BSDCan), May 2005.

[31] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L.
Bircher, and M. S. S. Govindan, “AUDIT: Stress testing the
automatic way,” in International Symposium on
Microarchitecture (MICRO), pp. 212–223, December 2012.

[32] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware,
B. Brock, J. A. Tierno, and J. B. Carter, “Active
management of timing guardband to save energy in
POWER7,” in International Symposium on
Microarchitecture (MICRO), pp. 1–11, December 2011.

[33] R. Bertran, A. Buyuktosunoglu, P. Bose, T. Slegel, G. Salem,
S. Carey, R. Rizzolo, and T. Strach, “Voltage noise in
multi-core processors: Emperical characterization and
optimization opportunities,” in International Symposium on
Microarchitecture (MICRO), pp. 368–380, December 2014.

[34] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. M.
Brooks, “Understanding voltage variations in chip
multiprocessors using a distributed power-delivery network,”
in Design Automation and Test in Europe (DATE),
pp. 624–629, 2007.

[35] D. Herrell and B. Beker, “Modeling of power distribution
systems for high-performance microprocessors,” IEEE
Transactions on Advanced Packaging, vol. 22, no. 3,
pp. 240–248, 1999.

[36] R. Joseph, D. Brooks, and M. Martonosi, “Control
techniques to eliminate voltage emergencies in high
performance processors,” in International Symposium on
High Performance Computer Architecture (HPCA),
pp. 79–90, February 2003.

[37] M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramonian,
A. Davis, and A. N. Udipi, “Quantifying the relationship
between the power delivery network and architectural
policies in a 3D-stacked memory device,” in International
Symposium on Microarchitecture (MICRO), pp. 198–209,
2013.

[38] E. Hayashi and J. Hong, “A diary study of password usage
in daily life,” in SIGCHI Conference on Human Factors in
Computing Systems (CHI), pp. 2627–2630, 2011.

[39] D. Florencio and C. Herley, “A large-scale study of web
password habits,” in International Conference on World
Wide Web (WWW), pp. 657–666, 2007.

[40] U. Rührmair and J. Sölter, “PUF modeling attacks: An
introduction and overview,” in Design Automation and Test
in Europe (DATE), pp. 348:1–348:6, 2014.

[41] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable
functions,” in ACM Conference on Computer and
Communications Security (CCS), pp. 237–249, 2010.

[42] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and
S. Devadas, “Extracting secret keys from integrated circuits,”
IEEE Transactions on Very Large Scale Integration Systems,
vol. 13, pp. 1200–1205, Oct. 2005.

[43] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and
P. Tuyls, “The butterfly PUF protecting IP on every FPGA,”
IEEE International Workshop on Hardware-Oriented
Security and Trust, 2008.

[44] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan,
“Side-channel vulnerability factor: A metric for measuring
information leakage,” in International Symposium on
Computer Architecture (ISCA), pp. 106–117, 2012.

[45] R. Callan, A. Zajić, and M. Prvulovic, “A practical
methodology for measuring the side-channel signal available
to the attacker for instruction-level events,” in International
Symposium on Microarchitecture (MICRO), pp. 242–254,
2014.

[46] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games –
bringing access-based cache attacks on AES to practice,” in
IEEE Symposium on Security and Privacy (SP),
pp. 490–505, 2011.

[47] D. J. Bernstein, “Cache-timing attacks on AES,” tech. rep.,
The University of Illinois at Chicago, 2005.

[48] D. Page, “Theoretical use of cache memory as a
cryptanalytic side-channel.” Cryptology ePrint Archive,
Report 2002/169, 2002. http://eprint.iacr.org/.

[49] J. Bonneau and I. Mironov, “Cache-collision timing attacks
against AES,” in International Conference on Cryptographic
Hardware and Embedded Systems (CHES), pp. 201–215,
2006.

[50] O. Aciçmez, W. Schindler, and c. K. Koç, “Cache based
remote timing attack on the AES,” in Cryptographers’ Track
at the RSA Conference on Topics in Cryptology (CT-RSA),
pp. 271–286, 2006.

[51] M.-D. M. Yu and S. Devadas, “Secure and robust error
correction for physical unclonable functions,” IEEE Design
and Test of Computers, vol. 27, pp. 48–65, Jan. 2010.

[52] Z. S. Paral and S. Devadas, “Reliable and efficient
PUF-based key generation using pattern matching,” in
Proceedings of the IEEE International Symposium on
Hardware-Oriented Security and Trust, pp. 128–133, 2011.

[53] M. Bhargava and K. Mai, “An efficient reliable PUF-based
cryptographic key generator in 65nm CMOS,” in Design
Automation and Test in Europe (DATE), pp. 1–6, 2014.

	Introduction
	PUF Background and Metrics
	PUF System Authentication
	PUF Quality Metrics
	Uniqueness
	Reliability
	Identifiability
	Uniformity
	Bit-aliasing

	Correctable Errors in Caches
	The Authenticache System
	Challenge and Response
	Challenge Diversity and Storage
	Authentication
	Threat Model
	Adaptive Error Remapping

	Authenticache Prototype
	Shadowed Execution
	Self-Test and Error Handling
	Voltage Control
	Authentication

	Evaluation
	Methodology
	Identifiability in Noisy Environments
	Cache Error Persistence
	Aliasing and Uniformity
	Performance Overhead
	Authenticache Lifetime
	Model Building Attack Case Study

	Related Work
	PUF Designs
	Side-Channel Attacks
	Other PUF Applications

	Conclusion
	References

