
Using ECC Feedback to Guide Voltage Speculation in Low-Voltage Processors

Anys Bacha
Computer Science and Engineering

The Ohio State University
bacha@cse.ohio-state.edu

Radu Teodorescu
Computer Science and Engineering

The Ohio State University
teodores@cse.ohio-state.edu

Abstract—Low-voltage computing is emerging as a promis-

ing energy-efficient solution to power-constrained environ-

ments. Unfortunately, low-voltage operation presents significant

reliability challenges, including increased sensitivity to static

and dynamic variability. To prevent errors, safety guardbands

can be added to the supply voltage. While these guardbands

are feasible at higher supply voltages, they are prohibitively

expensive at low voltages, to the point of negating most

of the energy savings. Voltage speculation techniques have

been proposed to dynamically reduce voltage margins. Most

require additional hardware to be added to the chip to correct

or prevent timing errors caused by excessively aggressive

speculation.

This paper presents a mechanism for safely guiding voltage

speculation using direct feedback from ECC-protected cache

lines. We conduct extensive testing of an Intel Itanium proces-

sor running at low voltages. We find that as voltage margins

are reduced, certain ECC-protected cache lines consistently

exhibit correctable errors. We propose a hardware mechanism

for continuously probing these cache lines to fine tune supply

voltage at core granularity within a chip. Moreover, we

demonstrate that this mechanism is sufficiently sensitive to

detect and adapt to voltage noise caused by fluctuations in

chip activity. We evaluate a proof-of-concept implementation

of this mechanism in an Itanium-based server. We show that

this solution lowers supply voltage by 18% on average, reducing

power consumption by an average of 33% while running a mix

of benchmark applications.

I. INTRODUCTION

Handheld computers (such as smartphones and tablets)
represent the fastest growing segment of the computing
industry. These systems are also increasingly power con-
strained by demands for high performance coupled with
expectations of long battery life. In this context, low-voltage
operation is emerging as a promising energy-efficient so-
lution for the microprocessors powering these systems [6],
[10], [21].

Unfortunately, chips operating at low voltages face a host
of challenges, including decreased reliability and higher
sensitivity to parameter variation (process, temperature, volt-
age noise, etc.). The most common approach for dealing
with these issues at nominal voltages is to add conservative

This work was supported in part by HP, the National Science Foundation
under grants CCF-1117799 and CCF-1253933, and the Defense Advanced
Research Projects Agency under the PERFECT (DARPA-BAA-12-24)
program.

guardbands to the supply voltage (Vdd) of the chip. In
other words, the chip will run at a higher voltage and/or
lower frequency than necessary in order to prevent timing
errors and other failures that only occur under worst-case
operating conditions. While these guardbands are feasible
(albeit inefficient) at nominal voltages, they are prohibitively
expensive at low voltages. A typical guardband of 100mV
(or 10% of the nominal Vdd) represents almost 20% of the
Vdd of a low-voltage chip running at 500mV. Employing
such high guardbands can negate most of the energy benefits
of low-voltage chips.

Previous work has proposed voltage speculation tech-
niques that dynamically reduce voltage margins at runtime.
The idea is to gradually lower supply voltage while keeping
the processor frequency constant, saving power without
impacting performance. These solutions either detect and
recover from timing errors, as in Razor [12], or avoid errors
altogether with the help of timing monitoring circuits as
in work by Lefurgy et al. [20]. These approaches rely on
dedicated hardware for error detection or avoidance.

In previous work [4], we presented a firmware-based
voltage speculation solution that leverages feedback from
on-chip error correcting code (ECC) hardware to safely
adjust the supply voltage. When correctable errors are re-
ported by the ECC logic, the voltage is raised to a safe
level. The key observation made in the aforementioned work
– based on experiments on real hardware – is that these
benign ECC events are always triggered before actual errors
occur. The system reduces Vdd by 10%, on average, saving
substantial amounts of power. However, the system relies
on the actual workload to exercise sensitive cache lines that
trigger correctable errors. As a result, the system is overly
conservative, with most cores running at safe voltage levels
determined during off-line calibration. In addition, because
the system is based in firmware, it incurs a runtime overhead
for each handled error. This leads to diminishing energy
savings as the voltage is pushed lower and more correctable
errors are triggered.

This paper presents a new ECC-based voltage speculation
system that uses simple hardware support that directly
targets sensitive cache lines to accurately and continuously
monitor timing margins. The system is designed to take
advantage of chip characteristics that are specific to low-Vdd

operation. We used an Intel Itanium processor (similar to the
one examined in [4]) to characterize the voltage margins of
the chip at low voltages (around 600mV). We compared the
chip’s characteristics at low voltage with those exhibited at
the processor’s nominal Vdd of 1.1V.

We find that instruction and data caches are the most
sensitive structures at low voltages. These structures always
trigger correctable errors first as the supply voltage is low-
ered while keeping the frequency constant. Moreover, these
correctable errors are encountered consistently in the same
cache lines; although the addresses of such lines vary from
core to core. In addition, we find that the spread between the
Vdd at which a sensitive line reports an error and the voltage
at which the system crashes is almost 4⇥ larger at low Vdd
compared to that at the nominal Vdd. This gives every single
core in the system we tested a wide spread of safe operating
voltages below the Vdd that triggers the first correctable
error. It allows the system much more aggressive speculation
than is possible in the nominal Vdd region. Overall, we find
that correctable errors are more reliable and more consistent
predictors for timing margins at low Vdd compared to the
high Vdd region.

We also find significant variability in the minimum Vdd
that can be reached by individual cores, likely due to the
impact of manufacturing process variation on circuit delay.
This variability is about 4⇥ higher than at nominal Vdd,
making core-level voltage tuning solutions more attractive
at low-Vdd.

We evaluate our voltage speculation solution on a real
hardware platform that uses Intel Itanium 9560 processors.
We simulate some of the hardware-based components in
software running on a dedicated thread. We conduct dozens
of hours of testing of multiple chips and cores and found
our speculation system to operate reliably and without data
corruption. Moreover, we demonstrate that this mechanism
is sufficiently sensitive to detect and adapt to voltage noise
caused by fluctuations in chip activity. We find that our
solution lowers Vdd by 18% on average while running appli-
cations from CoreMark, SPECjbb2005, and SPEC CPU2000
benchmark sets. This reduces power consumption by an
average of 33% with no performance impact.

Overall, this paper makes the following contributions:
• Characterizes the low-voltage behavior of a production

microprocessor and demonstrates the amplified process
variation effects on memory devices.

• Presents a new, more reliable, precise, and aggressive
ECC-based voltage speculation solution specifically de-
signed to take advantage of low-voltage characteristics.

• Shows that the technique is sufficiently sensitive to
detect and adapt to voltage noise caused by processor
activity changes.

• Evaluates the proposed solution on a real hardware
platform based on Intel’s Itanium 9560 processors.

The rest of this paper is organized as follows: Section II

analyzes the voltage speculation potential at low voltages.
Section III details the architecture of the proposed ECC-
based voltage speculation system. Sections IV and V present
the methodology and experimental evaluation. Section VI
details related work; and Section VII concludes.

II. VOLTAGE SPECULATION POTENTIAL AT LOW-VDD

Caches are generally the most vulnerable structures to
low-Vdd operation [1], [5], [26], [27], [37]. They are op-
timized for density and therefore use the smallest transistors
available in a given technology node. These transistors are
the most affected by random variations such as dopant den-
sity fluctuations, leading to imbalance between the SRAM
cell inverters. As the voltage is lowered, these cells may
fail to reliably store data. Low-voltage operation coupled
with variation can also slow down access transistors in the
SRAM arrays. As a result, data reads may not complete in
the expected timeframe, leading to timing and other errors.

While many improvements and optimizations have made
SRAM cells more robust to low-voltage operation, caches
generally determine the supply voltage floor at which chips
can operate reliably [2], [8], [11], [34], [35] (also known
as Vccmin). Our study adds empirical evidence from experi-
ments on production processors to support this conclusion.

To help motivate this work, we explore the limits of
speculation in low-Vdd processors, as well as the potential for
using correctable errors to dynamically choose safe voltage
levels. We begin by examining the voltage margins available
for speculation when running a production microprocessor
at low Vdd.

A. Voltage Margins
For this study, we use a system with an Intel Itanium

II 9560 8-core processor [29]. More details about the ex-
perimental setup are presented in Section IV. We conduct
two sets of experiments. In the first, we set the frequency
and Vdd at the nominal level of 2.53GHz. In the second,
we set the processor frequency to 340MHz, the lowest
supported, in order to test the limits of this system. A
production low-voltage system would likely run at higher
frequencies (500MHz-1GHz) in order to keep performance
at reasonable levels. In both experiments, we gradually lower
supply voltage while keeping the frequency fixed and the
system under load. We run a stress test application consisting
of CPU-intensive kernels, as well as cache and memory-
intensive kernels. For each core we record the lowest Vdd
at which it functions correctly with no crashes or data
corruption.

Figure 1 shows the minimum safe voltage of each core
for both 2.53GHz and 340MHz relative to their respective
nominal Vdds. At high frequency, the average minimum safe
voltage is more than 10% below the chip’s high-Vdd nominal
of 1.1V. This is a typical guardband in CPUs today. At
340MHz, the lowest safe Vdd ranges from 600 to 660mV

 0

 0.2

 0.4

 0.6

 0.8

 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

R
el

at
iv

e
S

u
p

p
ly

 V
o
lt

ag
e

2.53 GHz Safe/Min Vdd 340 MHz Safe/Min Vdd

Figure 1. Lowest safe Vdd for each core of an Itanium CMP at both high
and low frequencies.

Core0
Core1
Core2
Core3
Core4
Core5
Core6
Core7

 0.6 0.7 0.8 0.9 1 1.1
Supply Voltage (V)

2.53 GHz Error Free Range 340 MHz Error Free Range
2.53 GHz Corr. Error Range 340 MHz Corr. Error Range

Figure 2. Voltage speculation range for each core at high and low
frequencies.

with an average of 618 mV. This is 23% lower than the
low-Vdd nominal of 810mV. This indicates that voltage
speculation at low-Vdd has the potential to double the energy
savings obtained at high-Vdd.

The data also shows core-to-core variation in the min-
imum safe voltage increases at low-Vdd, exceeding 10%.
This is due to process variation and suggests that core-level
voltage speculation is potentially beneficial at low Vdd.

B. Correctable Error Range

We also find that, as Vdd approaches the lowest safe level,
the hardware reports correctable error events that occur in
the chip’s caches. Figure 2 illustrates the voltage speculation
ranges for both the high and low Vdd cases. The solid lines
represent voltage ranges over which the cores exhibit no
correctable errors. The bars to the right of the solid lines
mark the voltage ranges over which correctable errors occur.
The bars stop at the lowest safe Vdd.

The figure shows that in addition to the voltage specula-
tion margin being much larger at low-Vdd, the range of volt-
ages over which correctable errors occur is 4⇥ larger at low-
Vdd compared to high-Vdd. This has important implications
for ECC-driven voltage speculation. At nominal Vdd, the
smaller error range limits the aggressiveness of the voltage
speculation. This is because correctable errors are only
raised close to the minimum safe voltage. For this reason,
many of the cores examined in [4] were constrained to run
at voltages that were higher than necessary. At low Vdd, the
voltage speculation system receives earlier feedback about
approaching timing margins. This feedback spans a wider

 0
 50

 100
 150
 200
 250
 300
 350
 400

-20 -40 -60 -80 -100 -120 -140 -160 -180 -200

C
or

re
ct

ab
le

 E
rro

rs

Speculation Range (mV)

340 MHz 2.53 GHz

Figure 3. Average correctable errors across all cores vs. voltage speculation
range at high and low frequencies.

voltage range, allowing speculation to be more aggressive
and bring Vdd substantially lower. This means that each core
should be able to routinely run in an environment in which
correctable errors occur regularly (region marked by shaded
bars in Figure 2), without affecting the correctness of the
execution.

We also found that the number of correctable errors raised
at low-Vdd is higher than at high-Vdd. Figure 3 shows the
average correctable error rate as a function of Vdd for both
experiments. The X-axis in the figure represents the voltage
distance from the nominal levels of each experiment. The
origin on the X-axis represents the nominal Vdd for both
the high frequency and the low frequency cases. We can
see that for both experiments there is a voltage range that
exceeds 100mV in which no correctable errors are triggered.
If voltage is lowered more than 110mV below nominal,
correctable errors are triggered. As the voltage is lowered
further, some cores reach their minimum safe voltage. At
each voltage level we report the average error rate only
across the cores that are still active at that voltage.

For the high-Vdd case, the error rate peaks at approxi-
mately 35 errors over a 5 minute interval before the last
core reaches its minimum safe voltage. The low-Vdd case
generates many more errors, reaching an average of more
than 350 errors over the same time interval. The average
error rate generally increases as the Vdd is lowered. There
is some noise in the data caused by the inclusion of a
decreasing number of cores in the average as the Vdd is
lowered and cores reach their minimum Vdd.

Although this may appear counterintuitive, the higher
correctable error rate is helpful to the hardware-based ECC-
guided voltage speculation. Raising correctable errors more
frequently and consistently helps provide constant feedback
to the speculation system. This gives the system more precise
guidance about approaching timing margins and makes it
easier to accurately target a certain correctable error rate.

C. Correctable Error Types
We find that the types of errors exhibited at low Vdd differ

from those at nominal Vdd. At high Vdd, a mix of cache and
register file correctable errors are triggered, as reported in
[4]. At low Vdd, we only encounter errors in the instruction

 0

 50

 100

 150

 200

 250

 300

 350

Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7

C
or

re
ct

ab
le

 E
rro

rs

Data Cache Errors Instruction Cache Errors

Figure 4. Number and type of correctable errors for each core for a 5
minute run under load.

and data L2 caches. We believe this is due to the different
sizing of the SRAM cells used in the register files vs. caches.
Caches are designed using the smallest cells to increase
density, which makes them relatively more vulnerable to
low-voltage operation. The fact that we never see L1 cache
errors likely indicates that these caches are built using larger,
more robust SRAM cells, or perhaps a different cell design.

Figure 4 shows the breakdown of the number of errors
raised by each core while running the same workload
mix – consisting of both memory and compute intensive
benchmarks – for 5 minutes. The voltage of each core is set
at its lowest safe level. We can see that all the cores exhibit
both instruction and data cache correctable errors (with the
exception of core 5 which only triggers instruction cache
errors). There is also significant core-to-core variability
in the number of errors triggered. This can be explained
primarily by the fact that each cache has sensitive lines
in different locations. Since the test workload will likely
exercise some cache lines more than others, the number of
errors triggered by each core differs substantially.

There is also variability in error counts between instruc-
tion and data caches of each core. This is due to the smaller
miss rate in the instruction L1, resulting in fewer accesses
– and therefore fewer errors – in the instruction L2 cache.

D. Deterministic Error Distribution

An important observation we make while conducting
these experiments is that the correctable errors raised by
the system are deterministic. In other words, at the same
Vdd levels, cores exhibit roughly the same number of errors
in multiple runs of the same workload. Moreover, we find
that in each core errors are raised consistently by the
same cache lines. These lines likely contain cells that are
more vulnerable to low voltage than others due to process
variation. Starting from this observation, we propose a new
approach to guiding voltage speculation that directly targets
these weak lines with the help of simple hardware. Our
system is targeted and precise, enabling safer and more
aggressive voltage speculation.

Vdd domain 3

Vdd domain 2

Vdd domain 1

Core 2

Core 3 D$
I$

D$
I$

Interconnect

LLC

LLC

Core 0

Core 1 D$
I$

D$
I$

Core 6

Core 7D$
I$

D$
I$

Core 4

Core 5D$
I$

D$
I$

Vdd domain 0

Vdd domain 4

Voltage
Control

Active ECC Monitors Inactive ECC Monitors

Figure 5. Overview of the voltage speculation system integrated in a chip
multiprocessor with multiple Vdd domains.

III. VOLTAGE SPECULATION GUIDED BY ECC

We developed a voltage speculation mechanism specif-
ically designed to take advantage of chip properties that
are specific to low-voltage operation. The proposed system
takes advantage of the observations that correctable errors
are deterministic; and that at low voltages, the distance
between the first reported correctable error and the failure
Vdd increases substantially. The voltage speculation system
consists of two main components: a lightweight hardware
ECC monitor that continuously probes known vulnerable
cache lines and a voltage control system that uses feedback
from the ECC monitor to guide Vdd adjustments. Figure 5
shows an overview of how the voltage speculation system
would be integrated into a chip multiprocessor.

A. Hardware ECC Monitors

The ECC monitor is a hardware unit designed to contin-
uously probe the most vulnerable cache lines in the system.
The monitor consists of simple logic that generates test bit
patterns and writes them into the designated cache line. A
read request is issued after each write to that line. If the
ECC hardware already built into the system detects a single
bit error, it will correct the error and report the event to
the ECC monitor. The monitor maintains two counters: an
access counter and an error counter. The access counter is
incremented for every read request issued by the monitor to
the cache line under test. The error counter is incremented
every time a correctable error event is triggered by the cache
line under test. The counters are periodically reset. The ratio
between the two counter values represents the correctable
error rate for the line under test. This value will be used to
guide voltage adjustment decisions.

ECC monitors are built into all the data and instruction
cache controllers on the chip, as shown in Figure 5. How-
ever, at runtime, only a fraction of these monitors will be

activated. Since multiple cores and caches often share a
voltage domain, only the most vulnerable line in that domain
needs to be targeted by direct testing. Therefore, only the
ECC monitor corresponding to that line’s cache needs to be
active; the rest can be shut down. In the case of the system
in Figure 5, four ECC monitors are activated, one for each
Vdd domain that contains cores. Since there is no way of
knowing at design time where the most vulnerable line will
be, we need to provision all cache controllers with ECC
monitors.

B. Voltage Control System

A centralized voltage control system (Figure 5) runs on
the service microcontroller available in many processors
today [15], [29]. The control system periodically reads
the error counters for all active ECC monitors. A voltage
adjustment decision is then made based on the correctable
error rate. For instance, the control system can be set to
maintain the error rate somewhere between a floor and a
ceiling value. When the error rate exceeds the ceiling, the
voltage is raised by some small increment (e.g. 5mV). If
the error rate falls below the floor, the voltage is lowered by
the same increment. The floor and ceiling for the speculation
algorithm can be customized to the sensitivity of the voltage
domain, to account for process variation or other factors.
In our implementation, we set the floor and ceiling for all
voltage domains at 10% and 50% respectively.

An emergency mechanism is also in place in each hard-
ware ECC monitor. When the error rate exceeds an emer-
gency ceiling (for example 80%), an interrupt signal is sent
to the voltage control system which raises the voltage for
the domain by a larger increment to bring the system back
into the targeted error range.

C. System Calibration

A calibration step is necessary to configure the voltage
speculation system. The voltage speculation system is de-
signed to monitor the weakest cache line in each voltage
domain. This is the cache line that triggers correctable errors
at the highest Vdd. This line is identified during a simple
calibration step that can be performed periodically at system
boot time. Calibration involves progressively lowering the
Vdd and performing a cache sweep at each voltage level.

The cache sweep test involves both the data and in-
struction caches. As a mechanism to stress the data cache
during this phase, a set of loads and stores are performed
in cache line sized increments. In the case of the instruction
cache, the stress test is built dynamically. The process is
illustrated in Figure 6. A template of straight line instructions
is flashed in the System Firmware ROM. The template is
sized to match the L1 cache line. During boot, the template
is copied from the ROM and is sequentially replicated
throughout the allocated physical memory. Each template
ends with a conditional branch that determines if execution

...
System Firmware ROM

 reg_setup(cache_line);
 br_template(cache_line);

Main Memory

Template 0
Cache aligned address 0

Template n
Cache aligned address n

Template 2n
Cache aligned address 2n

...

Exit Template (return to caller)

...

i-cache Stress Template

 ADD R2, R2, offset
 SUB R3, 1
 CMP R3, 0
 BNZ, R2
 BR R8 (exit)

Sequential
Copy to
Memory

BNZ R2

BNZ R2

BNZ R2 ...

Figure 6. Illustration of the instruction cache sweep process.

must return to the caller or proceed to the next requested
offset. During the instruction cache sweep, the execution
branches to the immediately adjacent template until the
entire cache, including all the ways, have been exercised.

The cache sweep stops when a correctable error is en-
countered. The set and way of associativity of the cache line
that triggered the error is recorded. The corresponding ECC
monitor is activated and programmed to target the newly
designated line. The line is de-configured from the cache
to ensure no data will be stored there. The selected line
will only be used for speculation monitoring and will not
store any actual data. The voltage control system is also
programmed to interrogate the active ECC monitor for that
voltage domain.

D. Managing Aging and Temperature Variation
The voltage speculation system can be recalibrated period-

ically to determine if the error distribution has changed and
a new cache line needs to be designated for monitoring. If
the weakest line has changed due to aging, the ECC monitor
is reprogrammed to target the newly discovered weak line.
This ensures that the system can adapt to aging effects.

To verify if temperature variation can affect the cor-
rectable error distribution we conducted experiments under
different temperatures by slowing system enclosure fan
speeds. For variations of up to 20 �C we did not observe
a measurable effect on the rate or distribution of errors.

IV. EVALUATION METHODOLOGY

Evaluation of our system was performed on a hardware
platform, the BL860c-i4 Integrity Server from HP, equipped
with two Intel Itanium 9560 processors, each possessing
eight cores with hyperthreading. The system ran the HP-
UX Operating System. Table I lists additional detailed
information about the evaluation system.

Processor Itanium II 9560
Cores 8, in-order
Frequency 2.53GHz (high), 340MHz (low)
Nominal Vdd 1.1V (high), 810mV (low)
Register file size 1.38KB int, 1.25KB fp
L1 data cache 4-way 16KB, 1-cycle
L1 instruction cache 4-way 16KB, 1-cycle
L2 data cache 8-way 256KB, 9-cycle
L2 instruction cache 8-way 512KB, 9-cycle
L3 unified 32-way 32MB, 50-cycles
QPI Speed 6.4 GT/s
Max TDP 170 W
Technology 32nm
Voltage domains 6
System HP BL860c-i4 blade
Memory DDR3 32GB
Operating System HP-UX 11i v3

Table I
ARCHITECTURAL AND SYSTEM DETAILS OF THE BL860-I4 INTEGRITY

SERVER AND ITANIUM 9560 PROCESSOR [16], [17].

The low frequency is set to the lowest supported by the
system, 340MHz. Since there is no published “nominal” Vdd
for this frequency, we assumed the same absolute guardband
would be used at both high and low Vdd. We measured the
guardband as the difference between the nominal V dd at
2.53GHz and the voltage at which the first correctable error
is encountered at the same frequency. This was determined to
be 100mV. We added this guardband to the Vdd at which the
first correctable error is encountered at 340MHz. This gave
us a nominal Vdd of 810mV for the low-voltage environment.

A. Experimental Platform

We use a firmware-based framework for modeling our
system on real hardware. A runtime system is implemented
to model both the ECC monitor and the voltage speculation
control. The functionality of the ECC monitor is imple-
mented with the help of cache self-tests that perform targeted
reads and writes to designated lines. In our system, the most
vulnerable lines reside in the L2 instruction and data caches.
The challenge of performing this test in firmware is that
direct access to specific cache ways in the L2 is not possible.
Therefore, we developed a testing routine that bypasses the
L1 to effectively exercise the designated cache line within
the L2.

1) Targeted Cache Line Testing: Figure 7 illustrates the
steps involved in the targeted testing of a specific cache line.
In the first step, a total of eight lines are fetched to populate
each way in the L2 cache, which is 8-way set associative. To
get around the L1 cache preventing accesses from reaching
the L2, we fetch four other cache lines (step 2). These map
to the previously used set in the L1 (the L1 is 4-way set
associative), but map to a different set in the L2. This is
possible since the size of the L2 cache is a multiple of the
L1 cache. Once we clear the entries in the L1 cache, we

L1 Cache (4-Way) L2 Cache (8-Way)

Set 0

0 2000 4000 6000

8000 A000 C000 E000

Way 0 Way 1 Way 2 Way 3

Way 4 Way 5 Way 6 Way 7

Set 0
0 2000 4000 6000

Way 0 Way 1 Way 2 Way 3

Set 32

Way 0 Way 1 Way 2 Way 3

Way 4 Way 5 Way 6 Way 7

Set 0

Set 0
1000 3000 5000 7000

Way 0 Way 1 Way 2 Way 3

Set 32

Set 0

0 2000 4000 6000

8000 A000 C000 E000

Way 0 Way 1 Way 2 Way 3

Way 4 Way 5 Way 6 Way 7

Set 0
1000 3000 5000 7000

Way 0 Way 1 Way 2 Way 3

Set 32

1000 3000 5000 7000

Way 0 Way 1 Way 2 Way 3

Way 4 Way 5 Way 6 Way 7

0 2000 4000 6000

8000 A000 C000 E000

Way 0 Way 1 Way 2 Way 3

Way 4 Way 5 Way 6 Way 7

1000 3000 5000 7000

Way 0 Way 1 Way 2 Way 3

Way 4 Way 5 Way 6 Way 7

1) Load L2: Fetch 8 cache lines
 Address[0x0, 0x2000,…, 0xE000]

2) Evict L1: Fetch 4 cache lines
 Address[0x1000, 0x3000,…, 0x7000]

3) Target L2 (miss L1 and hit L2):
 Access original lines
 Address[0x0, 0x2000,…, 0xE000]

Figure 7. Execution steps for performing a targeted cache line test.

access the original eight cache lines that are still resident in
the L2 cache entry targeted by the self-test (step 3).

2) Implementation of ECC Monitor: To approximate the
behavior of the hardware ECC monitor on a real platform,
we dedicate one of the two hardware threads within each
core for initiating and handling self-test operations that drive
voltage speculation. This required disabling multi-threading
at the OS level for the purpose of this study. To achieve this,
System Firmware claimed ownership of each disabled thread
(Thread 1) within a core, while the OS continued to use the
primary thread (Thread 0) for application scheduling. This is
shown in Figure 8. In most of the experiments we conducted,
the benchmark thread ran on the primary hardware thread
while System Firmware simultaneously ran the self-test and
monitored ECC events on the secondary thread.

3) Service Processor: For the purpose of logging and
reporting experimental data, an entire core was reserved for
System Firmware use. Dedicating a core to handling such
measurements greatly simplified the data collection process.
However, in order to facilitate such retention of hardware

VR

Vdd

Workload
Hardware Thread 0

Core

Monitor
Hardware Thread 1

ECC Event

Selftest

Adapt Voltage

OS (HP-UX)

Sy
st

em
 F

irm
w

ar
e

Cache

Figure 8. Overview of the ECC Monitor simulation framework.

resources from the OS, additional firmware layers had to
be modified. These layers are: the Advanced Configuration
and Power Interface (ACPI) and the Unified Extensible
Firmware Interface (UEFI). Modifying these layers enabled
the live data collection we needed while the OS was active.
This data included average power, voltage settings, error
rate information, and coordination of voltage speculation
experiments.

4) Data Logging and Collection: Power consumption
information was collected by sampling a set of processor
registers. We collected the power information for each core
pair in addition to the uncore component. We also logged the
temperature information for each core. To keep the logging
overhead manageable for long runs, the aforementioned data
was sampled every 1ms.

Special hooks were developed to record logs of the set and
way of correctable cache errors reported by the hardware.
These were used to characterize the correctable error profile
of each core at multiple voltage levels. Error logs were also
kept while running the voltage speculation algorithm. These
were used to construct time based voltage and error rate
traces.

The processors in this system have multiple power deliv-
ery lines – one for each pair of cores and a separate one
for the “uncore” components, such as the L3 cache and
memory controllers [29]. The supply voltage of each of these
power lines can be independently modulated. Experiments
that examined the sensitivity of each core in response to
low voltage were conducted by exercising a single core at a
time. The auxiliary core that shares a supply line with the
one under evaluation was left idle in a tight spin-loop within
System Firmware. This prevented the OS from reclaiming
the core for background tasks which could skew our results.
This allowed data collection at core granularity even with
core pairs sharing voltage rails.

ECC Event

Core Cluster
weak line

Cache
(Core 0)

ECC

Selftest

 Instruction 1: FMA

 Instruction n: FMA

...

 Instruction 1: NOP

 Instruction n: NOP

...Idle cycles

High-
power
cycles

VRShared Vdd

Core 1

Voltage Virus

Core 0

for(count = 0;
 count < MAX_SELFTEST;
 count++)
{
 fetch_cacheline(weak_line)
 evict_l1(weak_line);
 access_l2(weak_line);
}

Self-test Code

Figure 9. Overview of the noise experiment setup with the voltage virus
running on the auxiliary core.

B. Inducing Voltage Noise
An important part of the evaluation was to test the

resilience of the proposed voltage speculation system under
voltage noise conditions. To artificially generate noise in
the supply voltage, we exploited the fact that two cores
share a single supply. We use one of the cores to induce
noise through the execution of a carefully calibrated “voltage
virus” in an approach similar to that used by Kim et al. in
[19]. This setup is illustrated in Figure 9.

The “voltage virus” consisted of a loop containing high-
power instructions such as Floating-point Multiply Add
(FMA) interleaved with NOPs at a 50% duty cycle. The
goal was to induce the type of regular activity fluctuation
pattern that has been previously reported to excite the chip’s
resonant frequency and cause large droops in Vdd [14], [19],
[28]. We generated multiple variants of this workload by
varying the number of NOP instructions. This allowed us to
sweep through multiple workload oscillation frequencies to
try to match the chip’s resonance frequency.

The main core of the cluster was used to monitor ECC
events and detect noisy conditions through abrupt increases
in the number of correctable errors.

C. Benchmarks
Multiple benchmark suites were used in the evaluation:

CoreMark, SPECjbb2005, and SPEC CPU2000. CoreMark,
which consists of kernels tailored for mobile processors was
configured to run a full instance of the suite on each core.
SPECjbb2005 was configured in a similar fashion where a
total of 8 warehouses were launched on each core under test.
For SPEC CPU2000, all benchmarks were individually run
on the respective cores within the CMP, with the exception
of wupwise and apsi, which we could not successfully run
on this system. In addition to the aforementioned industry

Suite Benchmark
CoreMark list processing, matrix manipulation,

state machine, CRC.
SPECjbb2005 8 warehouses
SPECint gzip, vpr, gcc, mcf,crafty, parser,

eon, perbmk, gap, vortex, bzip2, twolf
twolf, swim, mgrid, applu, mesa,

SPECfp galgel, art, equake, facerec,
ammp, art, lucas, fma3d, sixtrack
CPU-intensive (FP and INT) kernels.

Stress test Cache and memory-intensive kernels.
Designed to stress test HP servers.

Table II
APPLICATIONS AND BENCHMARKS USED IN THE EVALUATION.

standard benchmarks, a stress test application consisting
of CPU-intensive kernels, as well as cache and memory-
intensive kernels, was used to characterize the processor’s
voltage margins. Benchmarks were run back-to-back to
ensure context switches are handled correctly by the voltage
speculation algorithm. Table II shows a summary of the
different benchmarks used in the evaluation.

V. EVALUATION

In this section we evaluate the benefits of aggressively
lowering the supply voltage while maintaining safe opera-
tion. We show a significant reduction in voltage that leads
to substantial power savings. We examine the robustness of
the system in adapting to changes in workload intensity,
including those sufficiently severe to lead to voltage noise.
Cache line error rate sensitivity to voltage and graceful
degradation is also shown. We compare the energy savings
to a software-only voltage speculation solution similar to
that in [4].

A. Voltage Reduction and Power Savings
Figure 10 shows the average voltage of each core of one

processor for each of the four benchmark suites we ran.
The baseline reference is the low-voltage nominal Vdd of
810mV, illustrated on the figure as the dotted red line. Our
system lowers Vdd by an average of 18% relative to the
baseline. We observe large core-to-core variability with the
Vdd reduction ranging from 13% to 23% across all the cores.
This is evidence of process variation effects which are more
pronounced at low voltages [11], [23].

There is little variability in the voltage reduction across
the four benchmark sets under evaluation. This is because
our algorithm does not rely on the workload to exercise
sensitive cache lines as in prior work [4]. It instead relies on
targeting the weakest cache lines, making the system more
precise. Significant variability in Vdd does exist over shorter
time intervals and between individual applications as the
workload intensity changes.

The large reduction in supply voltage translates into sub-
stantial power savings. Figure 11 shows an average power

 0

 0.2

 0.4

 0.6

 0.8

 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Su
pp

ly
 V

ol
ta

ge
 (V

)

CoreMark
SPECjbb

SPECint
SPECfp

Nominal Vdd

Figure 10. Average core voltages achieved through voltage speculation
for each benchmark suite.

 0

 0.2

 0.4

 0.6

 0.8

 1

CoreMark Specjbb2005 SPECint SPECfp

R
el

at
iv

e
Po

w
er

Figure 11. Total power relative to the reference voltage for each benchmark
suite.

savings of 33% across all benchmarks, again with little
variability between the benchmark suites.

B. Dynamic Adaptation to Workload

The voltage speculation system continuously adjusts the
supply voltage to ensure reliable operation. All cores start
running at their nominal voltage. Voltage is then continu-
ously reduced or increased in steps of 5mV until the self-test
reports an error rate between a floor of 10% and a ceiling
of 50%. Figure 12 shows a trace of the supply voltage over
time for parts of two SPECint benchmarks running back to
back: mcf and crafty. The correctable error rate for the same
interval is also shown in the figure.

We can see the system is able to match changing workload
conditions and maintain the error rate within the targeted
range. Note that the figure only shows steady-state error rate
and does not include the brief transients that fall below the
floor or above the ceiling Vdds and trigger voltage changes.

 0.62
 0.625

 0.63
 0.635

 0.64
 0.645

 0.65
 0.655

 0.66

 320 330 340 350 360 370 380 390 400
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Su
pp

ly
 V

ol
ta

ge
 (V

)

Er
ro

r R
at

e

Time (seconds)

mcf crafty

Core Voltage Error rate

Figure 12. Dynamic adaptation of supply voltage to runtime conditions
while executing mcf followed by crafty from the SPECint benchmark.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7

Pr
ob

ab
ilit

y
of

 S
in

gl
e

Bi
t E

rro
r

Supply Voltage

Core A Core B Core C Core D

Figure 13. The probability of a single bit failure of a cache line for
different cores while running the cache line self-test.

The system adapts well to context switches as the workload
transitions from running mcf to crafty.

C. Cache Line Sensitivity at Low Voltages
Our system relies on the gradual change in the probability

of correctable errors in the cache lines targeted for monitor-
ing. In order to characterize error rate sensitivity to supply
voltage, we selected four cores that exhibited different error
distribution profiles. We then ran the targeted self-test on one
line of each core while progressively lowering Vdd. Figure 13
shows the probability of single bit errors vs. supply voltage
for each of these cores. In general, the onset of errors is
relatively slow. The ramp-up range (going from 0% to 100%
errors) spans between 20mV for core D to over 50mV for
core B. We change Vdd in 5mV increments which gives the
system sufficient resolution to keep the error rate between
the floor and ceiling values.

Figure 13 shows that margins of 10-20mV exist above
the 50% error ceiling we used. This gives the system a
margin for handling abrupt changes in dynamic conditions.
In addition, correct operation continues well beyond the
100% mark before the lowest safe Vdd is reached. This
indicates that there is some potential for tailoring the values
of the floor or ceiling Vdds. We leave such optimizations for
future work.

There is also significant variability between the voltages
at which the 50% ceiling is reached by the different cores
(0.625-0.685V). This highlights the benefits of core-level
voltage assignment and adaptation.

D. Algorithm Robustness and Sensitivity to Voltage Noise
In order to evaluate the robustness of our voltage specu-

lation algorithm, we conducted a series of tests to stress the
stability of the supply voltage. The goal was to examine
how the speculation system adapts to extreme operating
conditions.

1) Robustness to Activity Variation: Abrupt changes in
workload intensity lead to variation in power demand that
can rapidly depress supply voltage and cause errors. In order
to test how our system behaves under such conditions, we
construct a stress kernel designed to induce abrupt changes
in power demand.

 0.675
 0.68

 0.685
 0.69

 0.695
 0.7

 0.705
 0.71

 0.715

 0 200 400 600 800 1000 1200
 0

 0.5

 1

 1.5

 2

Su
pp

ly
 V

ol
ta

ge
 (V

)

Er
ro

r R
at

e

Time (seconds)

Core Voltage Error rate

(a) Main core idle.

 0.67
 0.675

 0.68
 0.685

 0.69
 0.695

 0.7
 0.705

 0.71
 0.715

 0 200 400 600 800 1000 1200
 0

 0.5

 1

 1.5

 2

Su
pp

ly
 V

ol
ta

ge
 (V

)

Er
ro

r R
at

e

Time (seconds)

Core Voltage Error rate

(b) Main core running SPECfp.

Figure 14. Dynamic adaptation of Vdd to workload stress induced by the
stress kernel runnning on the auxiliary core.

To conduct this test under realistic conditions, we lever-
aged the fact that in the chip we used, every two cores share
a single Vdd domain. Therefore, we could use one of the
cores in a pair to run the main workload under test and the
sibling core (auxiliary core) to run the stress kernel. This
setup simulates conditions in which the regular workload is
disturbed by additional load on the power supply. To induce
load variation, the stress kernel was scheduled to run for 30
seconds and then abruptly throttled for another 30 seconds
by having System Firmware interrupt the auxiliary core. The
interrupted core would then go into a low-power spin-loop
inside System Firmware for 30 seconds before resuming
execution of the stress kernel.

We conduct two experiments: one in which the main core
is idle and one in which the main core is under load running
the SPECfp suite. Figure 14 shows the Vdd and error rate
over time for these two cases. Both experiments run for 20
minutes with the auxiliary core executing the stress kernel. In
both experiments, we can clearly see the Vdd pattern change
every 30 seconds as the stress kernel is periodically throttled
on the auxiliary core. When the stress kernel is active, the
voltage droops, reducing the timing margin and increasing
the correctable error rate. Our test system detects the change
and raises the Vdd. The voltage is lowered as soon as the
auxiliary core begins to idle, reducing the demand on the
system. Throughout the execution, the algorithm attempts to
reduce Vdd to lower values (as indicated by the short-lived
drops in voltage), but generally maintains the Vdd within
a fairly narrow band for both the heavy-loaded and light-
loaded cases.

The main difference between the two experiments is that
the average Vdd is lower for the SPECfp run (Figure 14(b))
compared to the idle run (Figure 14(a)). These results show
that our voltage speculation algorithm adapts very well to
changes in workload and stress on the supply voltage and
consistently maintains the error rate within the specified
interval.

2) Robustness to Voltage Noise: To further stress our
system, we designed a “voltage virus” meant to induce
voltage noise on the power distribution network. The virus
consists of high power instructions interleaved with varying
numbers of NOPs as described in Section IV-B. By changing
the NOP count, we are effectively varying the oscillation
frequency of high/low-power phases in the virus workload.

We run the targeted self-test on the main core while
the voltage virus runs on the auxiliary core. We count the
number of errors raised during the self-test. Figure 15 shows
the error count for multiple versions of the voltage virus with
NOP counts ranging from 0 to 20. For each NOP point in
the figure, a total of 5000 accesses to the weak cache line
in the main core were performed.

The data clearly shows a spike in error rate for the runs
between 8 and 11 NOPs, with a large peak at 8 NOPs.
While there is some variability in data obtained in different
runs, we found the 8 NOPs virus to repeatedly exhibit larger
error counts. Note that as the number of NOPs in the virus
increases, its power goes down, putting less pressure on the
power delivery network. As a result, we would expect the
error count to remain constant or decrease with the number
of NOPs. The fact that the error rate spikes for the NOP-8
virus (and is low or zero for lower NOP counts) indicates
that it is very likely oscillating close to the chip’s resonance
frequency [14], [19], [28], which leads to a larger droop and
higher error rate.

We expand the same experiment to examine if the be-
havior is consistent across multiple voltage levels. Figure
16 shows the error rate as a function of Vdd on the main
core for three different workloads running on the auxiliary
core. Aux. Load NOP-8 is the voltage virus with 8 NOPs
(worse case droop in the previous experiment). Aux. Load
NOP-0 is the same virus, but without any NOPs. The third
run is simply leaving the auxiliary core idle (No Aux. Load).
We observe that the NOP-8 case exhibits a higher error rate
relative to both the idle case and the NOP-0 case throughout
the entire voltage range. This is significant because the NOP-
0 virus has higher intensity and power demand than the
NOP-8 virus, so it should normally exhibit a higher error
rate. This is further evidence that that the NOP-8 voltage
virus likely exercises the resonance frequency.

This is an important finding for two reasons: first, it
shows that correctable errors in cache lines are sufficiently
sensitive to capture voltage noise effects, an observation that
as far as we know has not been documented before. Second,
given that our algorithm uses feedback from these lines

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20

C
or

re
ct

ab
le

 E
rro

rs

NOP Count

Correctable Errors vs. NOP Instructions

Figure 15. Cache line sensitivity to voltage noise on the main core while
running a voltage virus on the auxiliary core.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.68 0.682 0.684 0.686 0.688 0.69 0.692 0.694 0.696 0.698 0.7

Er
ro

r R
at

e

Supply Voltage

Aux. Load NOP-8 Aux. Load NOP-0 No Aux. Load

Figure 16. Error rate comparison of the main core with the auxiliary core
idle or running different voltage viruses.

to control speculation, our system should be robust under
voltage noise. To test this theory, we conducted multiple runs
of benchmarks on the main core with the NOP-8 voltage
virus on the auxiliary core. All tests completed successfully
without crashes or data corruption.

E. Characterizing the Source of Errors at Low-Voltage

A set of experiments were conducted to characterize the
nature of the correctable errors triggered during voltage
speculation. We ran a test to determine if any retention
errors were encountered while self-testing a given cache line.
This was achieved by performing a targeted cache line test
through the following steps. First, we raised Vdd by 80mV
above the nominal voltage of 810mV. Once the voltage
was raised, data was written into the cache line under test.
Writing the data at this high voltage was done to ensure that
write operations would complete without any error. The core
was then spun in a tight loop while Vdd was lowered to a
level that has a 100% probability of triggering a correctable
error. The core continued to spin at this low voltage for one
minute. After that, the voltage was raised to the original
80mV above nominal level and the cache line was read back.
We did not observe any correctable errors after applying the
aforementioned steps even though the same experiment was
repeated multiple times. This indicates that the correctable
errors triggered in our system are not memory retention
errors, but rather timing errors caused by excessive delay in
the memory access logic, or read disturb errors that corrupt
the data upon access.

 0

 0.2

 0.4

 0.6

 0.8

 1

CoreMark Specjbb2005 SPECint SPECfp

R
el

at
iv

e
En

er
gy

Software Speculation Hardware Speculation

Figure 17. Energy comparison of the hardware and software speculation
techniques relative to the low-voltage nominal Vdd.

F. Hardware vs. Software Speculation

We conducted a set of experiments to compare the energy
reduction achieved by our hardware-based speculation to
the software-based solution presented in prior work [4]. For
this comparison, we run both techniques at low-Vdd with
the same benchmarks on the same system. Figure 17 shows
the energy reduction for the two techniques relative to the
low-Vdd nominal. We can see that the hardware speculation
achieves lower energy than software-based speculation for
all benchmark sets. While the software technique reduces
energy by 22% on average, the hardware speculation delivers
11% additional energy savings.

There are two primary reasons why the software solution
is less efficient. First, it cannot be as aggressive in lowering
the voltage because it relies on the workload to exercise
weak cache lines. It generally operates at voltage levels at
which few or no correctable errors are triggered. The second
reason for the higher energy is the performance cost of
handling correctable errors in software/firmware rather than
hardware.

In the hardware based design, the main source of per-
formance impact lies in the self-test mechanism. However,
since access to the cache line under test is performed by
the hardware during idle cache cycles, the runtime overhead
is negligible. Cache storage is also largely unaffected since
only a single cache line is disabled for self-test purposes.

The cost of handling correctable errors in software can
also be a significant barrier to more aggressive speculation.
At lower voltages, the energy of the software solution can
start to increase. This is because the performance overhead
goes up rapidly as the number of errors increases. Figure
18 shows the energy of the hardware and software solutions
as a function of supply voltage for one core. The energy
decreases with voltage for both techniques until they reach
670mV. From that point, correctable errors start to occur and
the energy of the two solutions begins to diverge. The energy
of the software speculation starts to increase rapidly as the
error rate ramps up. The energy of the hardware solution
continues to decrease until the minimum safe voltage is
reached.

 0.5

 1

 1.5

 2

 2.5

 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

R
el

at
iv

e
En

er
gy

Supply Voltage (V)

Hardware Speculation Software Speculation

Figure 18. Core energy as a function of Vdd for the hardware and software
speculation techniques relative to the energy at nominal Vdd.

VI. RELATED WORK

The efficiency of very low voltage designs has been
demonstrated in many previous studies [7], [10], [11], [21],
[38]. In addition, several improvements geared towards
enhancing large cache operation in low voltage through
more reliable designs have been proposed [13], [24]. Despite
the significant progress in implementing such work into
production [32], various challenges remain when considering
reliability and high variation.

Runtime reduction of voltage and timing margins has
been explored in multiple bodies of work. For example,
Razor [12], a well-known technique in this space, employs
shadow latches that are running on a delayed clock. Such
latches serve the purpose of detecting and recovering from
timing errors. This enables their system to aggressively
lower voltage. EVAL [30] is another solution that targets
improving performance in the context of process variation.
It dynamically adapts supply voltage and body bias through
machine learning. Other dynamic solutions include the one
proposed by Lefurgy et al. [20]. This work entails reducing
voltage guardbands by inserting critical path monitors into
different units within an IBM POWER7 processor. The
system quickly reduces the clock frequency whenever a
timing violation is approached. Manageability firmware is
then used to adjust the voltage to an appropriate level.
Other work by Wang and Calhoun [33] targets the reduction
of voltage margins during standby. They employ custom
SRAM devices that are designed to prevent data retention
failures through the addition of canary cells. Such cells
are purposely calibrated to fail at higher voltages to avoid
retention failures in the usable SRAM bits.

In previous work [4], we proposed using correctable error
reports from ECC-protected on-chip SRAM structures to
control a firmware-based voltage speculation system running
at nominal Vdd. The mechanism gradually lowers supply
voltage while keeping the processor frequency constant until
correctable errors are reported by the ECC logic. That
system reduces Vdd by 10% on average. However, because
it relies on the actual workload to exercise the sensitive
memory structures the system is overly conservative with
most cores running at safe voltage levels determined during

off-line calibration. In addition, because the error handler
involves software, it has a high runtime overhead. This
leads to diminishing returns in energy savings if the system
triggers a constant stream of correctable errors.

This paper, on the other hand, presents an ECC-based
voltage speculation system that is more reliable, precise, and
aggressive. Our system is also specifically designed for very
low Vdd operation. In addition, we show that error rates in
cache lines are sufficiently sensitive to respond to voltage
noise effects, an observation that, as far as we know, has
not been made before. Overall, this study provides several
improvements compared to [4], where we show, on average,
an additional 8% in voltage reduction, an additional 12% in
power savings, and no performance impact.

Deployment of error-correcting hardware is widespread
in modern processors [3], [9], [15], [22], [25], [29] mainly
as protection against soft errors. Many novel types of ECC
for protecting memory structures have been proposed by
prior research [8], [18], [24], [31], [34], [36]. The trend
of decrease in the reliability of future CMOS generations
is expected to promote more on-chip ECC coverage as the
process technology continues to shrink. This will make the
deployment of ECC-guided speculation practical to more
types of processors from servers to mobile systems.

VII. CONCLUSION AND FUTURE WORK

This paper presented a new technique for using ECC as
feedback to aggressively reduce guardbands at low voltages.
We show that using targeted self-tests to a single cache
line is sufficient to effectively guide voltage speculation
for multiple cores without compromising safe operation of
the system. Evaluation on real hardware showed significant
power savings of 33% across a wide range of applications.

We hope this work will spark interest in using ECC as
a mechanism for voltage speculation. This study shows that
our ECC feedback is sufficiently sensitive to detect voltage
noise conditions, an observation that could have implications
on other mechanisms to detect and recover from voltage
noise-related issues. We believe this is a promising area for
future exploration. We also show that the speculation range
varies greatly with the operating voltage and frequency. We
would like to explore this variation in speculation range
across additional frequencies and examine how it impacts
energy usage.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable feedback on this work. We would also
like to thank Kristin Barber, Xiang Pan, Naser Sedaghati,
Renji Thomas, and Li Zhou from the Computer Architecture
Research Lab at OSU for their comments on the camera
ready. Special thanks to HP for providing equipment support
for this research.

REFERENCES

[1] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy, “Process
variation in embedded memories: failure analysis and varia-
tion aware architecture,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 9, pp. 1804–1814, September 2005.

[2] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilk-
erson, and S.-L. Lu, “Energy-efficient cache design us-
ing variable-strength error-correcting codes,” in International
Symposium on Computer Architecture (ISCA), June 2011, pp.
461–472.

[3] H. Ando, K. Seki, S. Sakashita, M. Aihara, Kan, and
K. Imada, “Accelerated testing of a 90nm SPARC64 V
microprocessor for neutron SER,” IEEE Workshop on Silicon
Errors in Logic - System Effects (SELSE), 2007.

[4] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage
margins by leveraging on-chip ECC in Itanium II proces-
sors,” in International Symposium on Computer Architecture
(ISCA), June 2013, pp. 297–307.

[5] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-
threshold SRAM design for ultra-low-voltage operation,”
IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 680–
688, 2007.

[6] A. Chandrakasan, D. Daly, D. Finchelstein, J. Kwong, Y. Ra-
madass, M. Sinangil, V. Sze, and N. Verma, “Technologies
for Ultradynamic Voltage Scaling,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 191–214, February 2010.

[7] L. Chang, D. Frank, R. Montoye, S. Koester, B. Ji, P. Coteus,
R. Dennard, and W. Haensch, “Practical strategies for power-
efficient computing technologies,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 215–236, February 2010.

[8] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and
S.-L. Lu, “Improving cache lifetime reliability at ultra-low
voltages,” in International Symposium on Microarchitecture
(MICRO), December 2009, pp. 89–99.

[9] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos,
D. Wu, M. Braganza, S. Meyers, E. Fang, and R. Kumar,
“An integrated quad-core Opteron processor,” in International
Solid-State Circuits Conference (ISSCC), February 2007, pp.
102–103.

[10] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s
Law Through Energy Efficient Integrated Circuits,” Proceed-
ings of the IEEE, vol. 98, no. 2, pp. 253–266, February 2010.

[11] R. G. Dreslinski, G. K. Chen, T. Mudge, D. Blaauw,
D. Sylvester, and K. Flautner, “Reconfigurable energy ef-
ficient near threshold cache architectures,” in International
Symposium on Microarchitecture (MICRO), December 2008,
pp. 459–470.

[12] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: A low-power pipeline based on circuit-level timing
speculation,” in International Symposium on Microarchitec-
ture (MICRO), December 2003, pp. 7–18.

[13] H. R. Ghasemi, S. Draper, and N. S. Kim, “Low-Voltage On-
Chip Cache Architecture Using Heterogeneous Cell Sizes for
High-Performance Processors,” in International Symposium
on High Performance Computer Architecture (HPCA), Febru-
ary 2011, pp. 38–49.

[14] M. S. Gupta, J. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks,
“Understanding voltage variations in chip multiprocessors
using a distributed power-delivery network,” in Design Au-
tomation and Test in Europe (DATE), April 2007, pp. 624–
629.

[15] “Intel CoreTM i7 Processor,” http://www.intel.com.

[16] “Intel Itanium processor 9500 series reference manual, 2012,
revision 0.2,” http://www.intel.com.

[17] “Intel Itanium processor 9560 (32M cache, 2.53 GHz),” http:
//www.intel.com.

[18] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-
bit error tolerant caches using two-dimensional error coding,”
in International Symposium on Microarchitecture (MICRO),
December 2007, pp. 197–209.

[19] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L.
Bircher, and M. S. S. Govindan, “AUDIT: Stress testing the
automatic way,” in International Symposium on Microarchi-
tecture (MICRO), December 2012, pp. 212–223.

[20] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware,
B. Brock, J. A. Tierno, and J. B. Carter, “Active management
of timing guardband to save energy in POWER7,” in Interna-
tional Symposium on Microarchitecture (MICRO), December
2011, pp. 1–11.

[21] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey,
“Ultralow-power design in near-threshold region,” Proceed-
ings of the IEEE, vol. 98, no. 2, pp. 237–252, February 2010.

[22] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Mil-
lican, W. H. Parks, and S. Naffziger, “Power and temperature
control on a 90-nm Itanium family processor,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 1, pp. 229–237, January
2006.

[23] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodor-
escu, “Booster: Reactive core acceleration for mitigating
the effects of process variation and application imbalance
in low-voltage chips,” in International Symposium on High
Performance Computer Architecture (HPCA), February 2012,
pp. 27–38.

[24] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodor-
escu, “Parichute: Generalized turbocode-based error correc-
tion for near-threshold caches,” in International Symposium
on Microarchitecture (MICRO), December 2010, pp. 351–
362.

[25] J. Mitchell, D. Henderson, and G. Ahrens, “IBM POWER5
processor-based servers: A highly available design for
business-critical applications,” IBM Technical Report, 2006.

[26] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Statistical de-

sign and optimization of SRAM cell for yield enhancement,”
in International Conference on Computer-aided Design (IC-
CAD), 2004, pp. 10–13.

[27] Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung,
“Selective wordline voltage boosting for caches to manage
yield under process variations,” in Design Automation Con-
ference (DAC), 2009, pp. 57–62.

[28] M. D. Powell and T. N. Vijaykumar, “Pipeline muffling and
a priori current ramping: architectural techniques to reduce
high-frequency inductive noise,” in International Symposium
on Low Power Electronics and Design (ISLPED), August
2003, pp. 223–228.

[29] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer,
P. Gronowski, and T. Grutkowski, “A 32nm 3.1 billion
transistor 12-wide-issue Itanium processor for mission-critical
servers,” in International Solid-State Circuits Conference
(ISSCC), February 2011, pp. 84–86.

[30] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas, “EVAL:
utilizing processors with variation-induced timing errors,”
in International Symposium on Microarchitecture (MICRO),
November 2008, pp. 423–434.

[31] H. Sun, N. Zheng, and T. Zhang, “Realization of L2 cache
defect tolerance using multi-bit ECC,” in Defect and Fault
Tolerance of VLSI Systems, October 2008, pp. 254–262.

[32] S. Vangal, “A solar powered IA core? No way!”
Research@Intel, September 2011, http://blogs.intel.com/
intellabs/2011/09/15/ntvp/.

[33] J. Wang and B. H. Calhoun, “Canary replica feedback for
near-DRV standby Vdd scaling in a 90nm SRAM,” in Custom
Integrated Circuits Conference, September 2007, pp. 29–32.

[34] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. So-
masekhar, and S.-L. Lu, “Reducing cache power with low-
cost, multi-bit error-correcting codes,” in International Sym-
posium on Computer Architecture (ISCA), 2010, pp. 83–93.

[35] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khel-
lah, and S.-L. Lu, “Trading off cache capacity for reliability
to enable low voltage operation,” in International Symposium
on Computer Architecture (ISCA), June 2008, pp. 203–214.

[36] D. Yoon and M. Erez, “Memory mapped ECC: Low-cost error
protection for last level caches,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 116–127, 2009.

[37] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, “A Sub-
200mV 6T SRAM in 0.13µm CMOS,” in International Solid-
State Circuits Conference (ISSCC), February 2007, pp. 332–
606.

[38] B. Zhai, R. G. Dreslinski, D. Blaauw, T. Mudge, and
D. Sylvester, “Energy efficient near-threshold chip multi-
processing,” in International Symposium on Low Power Elec-
tronics and Design (ISLPED), August 2007, pp. 32–37.

